Do you want to publish a course? Click here

Peculiar velocity cosmology with type Ia supernovae

79   0   0.0 ( 0 )
 Added by Romain Graziani
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Type Ia Supernovae have yet again the opportunity to revolutionize the field of cosmology as the new generation of surveys are acquiring thousands of nearby SNeIa opening a new era in cosmology: the direct measurement of the growth of structure parametrized by $fD$. This method is based on the SNeIa peculiar velocities derived from the residual to the Hubble law as direct tracers of the full gravitational potential caused by large scale structure. With this technique, we could probe not only the properties of dark energy, but also the laws of gravity. In this paper we present the analytical framework and forecasts. We show that ZTF and LSST will be able to reach 5% precision on $fD$ by 2027. Our analysis is not significantly sensitive to photo-typing, but known selection functions and spectroscopic redshifts are mandatory. We finally introduce an idea of a dedicated spectrograph that would get all the required information in addition to boost the efficiency to each SNeIa so that we could reach the 5% precision within the first two years of LSST operation and the few percent level by the end of the survey.



rate research

Read More

We present the Democratic Samples of Supernovae (DSS), a compilation of 775 low-redshift Type Ia and II supernovae (SNe Ia & II), of which 137 SN Ia distances are derived via the newly developed snapshot distance method. Using the objects in the DSS as tracers of the peculiar-velocity field, we compare against the corresponding reconstruction from the 2M++ galaxy redshift survey. Our analysis -- which takes special care to properly weight each DSS subcatalogue and cross-calibrate the relative distance scales between them -- results in a measurement of the cosmological parameter combination $fsigma_8 = 0.390_{-0.022}^{+0.022}$ as well as an external bulk flow velocity of $195_{-23}^{+22}$ km s$^{-1}$ in the direction $(ell, b) = (292_{-7}^{+7}, -6_{-4}^{+5})$ deg, which originates from beyond the 2M++ reconstruction. Similarly, we find a bulk flow of $245_{-31}^{+32}$ km s$^{-1}$ toward $(ell, b) = (294_{-7}^{+7}, 3_{-5}^{+6})$ deg on a scale of $sim 30 h^{-1}$ Mpc if we ignore the reconstructed peculiar-velocity field altogether. Our constraint on $fsigma_8$ -- the tightest derived from SNe to date (considering only statistical error bars), and the only one to utilise SNe II -- is broadly consistent with other results from the literature. We intend for our data accumulation and treatment techniques to become the prototype for future studies that will exploit the unprecedented data volume from upcoming wide-field surveys.
An important problem in precision cosmology is the determination of the effects of averaging and backreaction on observational predictions, particularly in view of the wealth of new observational data and improved statistical techniques. In this paper, we discuss the observational viability of a class of averaged cosmologies which consist of a simple parametrized phenomenological two-scale backreaction model with decoupled spatial curvature parameters. We perform a Bayesian model selection analysis and find that this class of averaged phenomenological cosmological models is favored with respect to the standard $Lambda$CDM cosmological scenario when a joint analysis of current SNe Ia and BAO data is performed. In particular, the analysis provides observational evidence for non-trivial spatial curvature.
We present the cosmological analysis of 752 photometrically-classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our photometric-classification method is based on the SN typing technique of Sako et al. (2011), aided by host galaxy redshifts (0.05<z<0.55). SNANA simulations of our methodology estimate that we have a SN Ia typing efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e.g., Malmquist bias) using simulations. When fitting to a flat LambdaCDM cosmological model, we find that our photometric sample alone gives omega_m=0.24+0.07-0.05 (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on omega_m and omega_lambda, comparable to those derived from the spectroscopically-confirmed three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics-only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H0, CMB and LRG data, we obtain w=-0.96+0.10-0.10, omega_m=0.29+0.02-0.02 and omega_k=0.00+0.03-0.02 (statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is re-assuring, considering the lower redshift leverage of the SDSS-II SN sample (z<0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically-classified SNe Ia samples in improving cosmological constraints.
Type Ia Supernovae (SNe Ia) are widely used to measure the expansion of the Universe. To perform such measurements the luminosity and cosmological redshift ($z$) of the SNe Ia have to be determined. The uncertainty on $z$ includes an unknown peculiar velocity, which can be very large for SNe Ia in the virialized cores of massive clusters. We determine which SNe Ia exploded in galaxy clusters. We then study how the correction for peculiar velocities of host galaxies inside the clusters improves the Hubble residuals. Using 145 SNe Ia from the Nearby Supernova Factory we found 11 candidates for membership in clusters. To estimate the redshift of a cluster we applied the bi-weight technique. Then, we use the galaxy cluster redshift instead of the host galaxy redshift to construct the Hubble diagram. For SNe Ia inside galaxy clusters the dispersion around the Hubble diagram when peculiar velocities are taken into account is smaller in comparison with a case without peculiar velocity correction, with a $wRMS=0.130pm0.038$ mag instead of $wRMS=0.137pm0.036$ mag. The significance of this improvement is 3.58 $sigma$. If we remove the very nearby Virgo cluster member SN2006X ($z<0.01$) from the analysis, the significance decreases to 1.34 $sigma$. The peculiar velocity correction is found to be highest for the SNe Ia hosted by blue spiral galaxies, with high local specific star formation rate and smaller stellar mass, seemingly counter to what might be expected given the heavy concentration of old, massive elliptical galaxies in clusters. As expected, the Hubble residuals of SNe Ia associated with massive galaxy clusters improve when the cluster redshift is taken as the cosmological redshift of the SN. This fact has to be taken into account in future cosmological analyses in order to achieve higher accuracy for cosmological redshift measurements. Here we provide an approach to do so.
316 - James D. Neill , 2007
We quantify the effect of supernova Type Ia peculiar velocities on the derivation of cosmological parameters. The published distant and local Ia SNe used for the Supernova Legacy Survey first-year cosmology report form the sample for this study. While previous work has assumed that the local SNe are at rest in the CMB frame (the No Flow assumption), we test this assumption by applying peculiar velocity corrections to the local SNe using three different flow models. The models are based on the IRAS PSCz galaxy redshift survey, have varying beta = Omega_m^0.6/b, and reproduce the Local Group motion in the CMB frame. These datasets are then fit for w, Omega_m, and Omega_Lambda using flatness or LambdaCDM and a BAO prior. The chi^2 statistic is used to examine the effect of the velocity corrections on the quality of the fits. The most favored model is the beta=0.5 model, which produces a fit significantly better than the No Flow assumption, consistent with previous peculiar velocity studies. By comparing the No Flow assumption with the favored models we derive the largest potential systematic error in w caused by ignoring peculiar velocities to be Delta w = +0.04. For Omega_Lambda, the potential error is Delta Omega_Lambda = -0.04 and for Omega_m, the potential error is Delta Omega_m < +0.01. The favored flow model (beta=0.5) produces the following cosmological parameters: w = -1.08 (+0.09,-0.08), Omega_m = 0.27 (+0.02,-0.02) assuming a flat cosmology, and Omega_Lambda = 0.80 (+0.08,-0.07) and Omega_m = 0.27 (+0.02,-0.02) for a w = -1 (LambdaCDM) cosmology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا