No Arabic abstract
We predict cosmological constraints for forthcoming surveys using Superluminous Supernovae (SLSNe) as standardisable candles. Due to their high peak luminosity, these events can be observed to high redshift (z~3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the Search Using DECam for Superluminous Supernovae (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardisation values for SLSNe. We include uncertainties due to gravitational lensing and marginalise over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ~100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Omega_m by at least 20% (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia and 10,000 LSST-like SLSNe can measure Omega_m and w to 2% and 4% respectively. The real power of SLSNe becomes evident when we consider possible temporal variations in w(a), giving possible uncertainties of only 2%, 5% and 14% on Omega_m, w_0 and w_a respectively, from the combination of DES SNe Ia, LSST-like SLSNe and Planck. These errors are competitive with predicted Euclid constraints, indicating a future role for SLSNe for probing the high redshift Universe.
In the last decade, astronomers have found a new type of supernova called `superluminous supernovae (SLSNe) due to their high peak luminosity and long light-curves. These hydrogen-free explosions (SLSNe-I) can be seen to z~4 and therefore, offer the possibility of probing the distant Universe. We aim to investigate the possibility of detecting SLSNe-I using ESAs Euclid satellite, scheduled for launch in 2020. In particular, we study the Euclid Deep Survey (EDS) which will provide a unique combination of area, depth and cadence over the mission. We estimated the redshift distribution of Euclid SLSNe-I using the latest information on their rates and spectral energy distribution, as well as known Euclid instrument and survey parameters, including the cadence and depth of the EDS. We also applied a standardization method to the peak magnitudes to create a simulated Hubble diagram to explore possible cosmological constraints. We show that Euclid should detect approximately 140 high-quality SLSNe-I to z ~ 3.5 over the first five years of the mission (with an additional 70 if we lower our photometric classification criteria). This sample could revolutionize the study of SLSNe-I at z>1 and open up their use as probes of star-formation rates, galaxy populations, the interstellar and intergalactic medium. In addition, a sample of such SLSNe-I could improve constraints on a time-dependent dark energy equation-of-state, namely w(a), when combined with local SLSNe-I and the expected SN Ia sample from the Dark Energy Survey. We show that Euclid will observe hundreds of SLSNe-I for free. These luminous transients will be in the Euclid data-stream and we should prepare now to identify them as they offer a new probe of the high-redshift Universe for both astrophysics and cosmology.
Prospects for future supernova surveys are discussed, focusing on the ESA Euclid mission and the European Extremely Large Telescope(E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned general-purpose ground-based 40m-class optical-IR telescope with adaptive optics built in, which will be capable of obtaining spectra of Type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programs such as those proposed for DES, JWST, LSST and WFIRST.
Type Ia Supernovae have yet again the opportunity to revolutionize the field of cosmology as the new generation of surveys are acquiring thousands of nearby SNeIa opening a new era in cosmology: the direct measurement of the growth of structure parametrized by $fD$. This method is based on the SNeIa peculiar velocities derived from the residual to the Hubble law as direct tracers of the full gravitational potential caused by large scale structure. With this technique, we could probe not only the properties of dark energy, but also the laws of gravity. In this paper we present the analytical framework and forecasts. We show that ZTF and LSST will be able to reach 5% precision on $fD$ by 2027. Our analysis is not significantly sensitive to photo-typing, but known selection functions and spectroscopic redshifts are mandatory. We finally introduce an idea of a dedicated spectrograph that would get all the required information in addition to boost the efficiency to each SNeIa so that we could reach the 5% precision within the first two years of LSST operation and the few percent level by the end of the survey.
Understanding how massive stars die as supernovae is a crucial question in modern astrophysics. Supernovae are powerful stellar explosions and key drivers in the cosmic baryonic cycles by injecting their explosion energy and heavy elements to the interstellar medium that forms new stars. After decades of effort, astrophysicists have built up a stand model for the explosion mechanism of massive stars. However, this model is challenged by new kinds of stellar explosions discovered in the recent transit surveys. In particular, the new population called superluminous supernovae, which are a hundred times brighter than typical supernovae, is revolutionizing our understanding of supernovae. New studies suggest the superluminous supernovae are associated with the unusual demise of very massive stars and their extreme supernovae powered by the radioactive isotopes or compact objects formed after the explosion. Studying these supernovae fills a gap of knowledge between the death of massive stars and their explosions; furthermore, we may apply their intense luminosity to light up the distant universe. This paper aims to provide a timely review of superluminous supernovae physics, focusing on the latest development of their theoretical models.
We present the Democratic Samples of Supernovae (DSS), a compilation of 775 low-redshift Type Ia and II supernovae (SNe Ia & II), of which 137 SN Ia distances are derived via the newly developed snapshot distance method. Using the objects in the DSS as tracers of the peculiar-velocity field, we compare against the corresponding reconstruction from the 2M++ galaxy redshift survey. Our analysis -- which takes special care to properly weight each DSS subcatalogue and cross-calibrate the relative distance scales between them -- results in a measurement of the cosmological parameter combination $fsigma_8 = 0.390_{-0.022}^{+0.022}$ as well as an external bulk flow velocity of $195_{-23}^{+22}$ km s$^{-1}$ in the direction $(ell, b) = (292_{-7}^{+7}, -6_{-4}^{+5})$ deg, which originates from beyond the 2M++ reconstruction. Similarly, we find a bulk flow of $245_{-31}^{+32}$ km s$^{-1}$ toward $(ell, b) = (294_{-7}^{+7}, 3_{-5}^{+6})$ deg on a scale of $sim 30 h^{-1}$ Mpc if we ignore the reconstructed peculiar-velocity field altogether. Our constraint on $fsigma_8$ -- the tightest derived from SNe to date (considering only statistical error bars), and the only one to utilise SNe II -- is broadly consistent with other results from the literature. We intend for our data accumulation and treatment techniques to become the prototype for future studies that will exploit the unprecedented data volume from upcoming wide-field surveys.