Do you want to publish a course? Click here

Looking deep into the Cats Eye: Structure and rotation in the fast wind of the PN central star of NGC6543

184   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present HST/STIS time-series spectroscopy of the central star of the Cats Eye planetary nebula NGC 6543. Intensive monitoring of the UV lines over a 5.8 hour period reveals well defined details of large-scale structure in the fast wind, which are exploited to provide new constraints on the rotation rate of the central star. We derive characteristics of the line profile variability that support a physical origin due to co-rotating interaction regions (CIRs) that are rooted at the stellar surface. The recurrence time of the observed spectral signatures of the CIRs is used to estimate the rotation period of the central star and, adopting a radius between 0.3 and 0.6 Rsun constrains the rotational velocity to the range 54 leq v_{rot} leq 108 kms. The implications of these results for single star evolution are discussed based on models calculated here for low-mass stars. Our models predict a sub-surface convective layer in NGC 6543 which we argue to be causally connected to the occurrence of structure in the fast wind.



rate research

Read More

Far-UV spectroscopy from the FUSE satellite is analysed to uniquely probe spatial structure and clumping in the fast wind of the central star of the H-rich planetary nebula NGC6543 (HD164963). Time-series data of the unsaturated PV 1118, 1128 resonance line P Cygni profiles provide a very sensitive diagnostic of variable wind conditions in the outflow. We report on the discovery of episodic and recurrent optical depth enhancements in the PV absorption troughs, with some evidence for a 0.17-day modulation time-scale. SEI line-synthesis modelling is used to derive physical properties, including the optical depth evolution of individual `events. The characteristics of these features are essentially identical to the `discrete absorption components (DACs) commonly seen in the UV lines of massive OB stars. We have also employed the unified model atmosphere code CMFGEN to explore spectroscopic signatures of clumping, and report in particular on the clear sensitivity of the PV lines to the clump volume filling factor. The results presented here have implications for the downward revision of mass-loss rates in PN central stars. We conclude that the temporal structures seen in the PV lines of NGC6543 likely have a physical origin that is similar to that operating in massive, luminous stars, and may be related to near-surface perturbations caused by stellar pulsation and/or magnetic fields.
To diagnose the time-variable structure in the fast winds of central stars of planetary nebulae (CSPN), we present an analysis of P Cygni line profiles in FUSE satellite far-UV spectroscopic data. Archival spectra are retrieved to form time-series datasets for the H-rich CSPN NGC 6826, IC 418, IC 2149, IC 4593 and NGC 6543. Despite limitations due to the fragmented sampling of the time-series, we demonstrate that in all 5 CSPN the UV resonance lines are variable primarily due to the occurrence of blueward migrating discrete absorption components (DACs). Empirical (SEI) line-synthesis modelling is used to determine the range of fluctuations in radial optical depth, which are assigned to the temporal changes in large-scale wind structures. We argue that DACs are common in CSPN winds, and their empirical properties are akin to those of similar structures seen in the absorption troughs of massive OB stars. Constraints on PN central star rotation velocities are derived from Fast-Fourier Transform analysis of photospheric lines for our target stars. Favouring the causal role of co-rotating interaction regions, we explore connections between normalised DAC accelerations and rotation rates of PN central stars and O stars. The comparative properties suggest that the same physical mechanism is acting to generate large-scale structure in the line-driven winds in the two different settings.
Phosphorus-bearing compounds have only been studied in the circumstellar environments (CSEs) of the asymptotic giant branch (AGB) star IRC +10216 and the protoplanetary nebula CRL 2688, both C-rich objects, and the O-rich red supergiant VY CMa. The current chemical models cannot reproduce the high abundances of PO and PN derived from observations of VY CMa. No observations have been reported of phosphorus in the CSEs of O-rich AGB stars. We aim to set observational constraints on the phosphorous chemistry in the CSEs of O-rich AGB stars, by focussing on the Mira-type variable star IK Tau. Using the IRAM 30m telescope and the Submillimeter Array (SMA), we observed four rotational transitions of PN (J=2-1,3-2,6-5,7-6) and four of PO (J=5/2-3/2,7/2-5/2,13/2-11/2,15/2-13/2). The IRAM 30m observations were dedicated line observations, while the SMA data come from an unbiased spectral survey in the frequency range 279-355 GHz. We present the first detections of PN and PO in an O-rich AGB star and estimate abundances X(PN/H2) of about 3x10^-7 and X(PO/H2) in the range 0.5-6.0x10^-7. This is several orders of magnitude higher than what is found for the C-rich AGB star IRC +10216. The diameter (<=0.7) of the PN and PO emission distributions measured in the interferometric data corresponds to a maximum radial extent of about 40 stellar radii. The abundances and the spatial occurrence of the molecules are in very good agreement with the results reported for VY CMa. We did not detect PS or PH3 in the survey. We suggest that PN and PO are the main carriers of phosphorus in the gas phase, with abundances possibly up to several 10^-7. The current chemical models cannot account for this, underlining the strong need for updated chemical models that include phosphorous compounds.
Asteroseismic measurements enable inferences of the underlying stellar structure, such as the density and the speed of sound at various points within the interior of the star. This provides an opportunity to test stellar evolution theory by assessing whether the predicted structure of a star agrees with the measured structure. Thus far, this kind of inverse analysis has only been applied to the Sun and three solar-like main-sequence stars. Here we extend the technique to stars on the subgiant branch, and apply it to one of the best-characterized subgiants of the Kepler mission, HR 7322. The observation of mixed oscillation modes in this star facilitates inferences of the conditions of its inert helium core, nuclear-burning hydrogen shell, and the deeper parts of its radiative envelope. We find that despite significant differences in the mode frequencies, the structure near to the center of this star does not differ significantly from the predicted structure.
We present the discovery and characterisation of the post-common-envelope central star system in the planetary nebula PN G283.7$-$05.1. Deep images taken as part of the POPIPlaN survey indicate that the nebula may possess a bipolar morphology similar to other post-common-envelope planetary nebulae. Simultaneous light and radial velocity curve modelling reveals the newly discovered binary system to comprise a highly-irradiated, M-type main-sequence star in a 5.9 hour orbit with a hot pre-white-dwarf. The nebular progenitor is found to have a particularly low mass of around 0.4 M$_odot$, making PN G283.7$-$05.1 one of only a handful of candidate planetary nebulae to be the product of a common-envelope event while still on the red giant branch. Beyond its low mass, the model temperature, surface gravity and luminosity are all found to be consistent with the observed stellar and nebular spectra through comparison with model atmospheres and photoionisation modelling. However, the high temperature (T$_mathrm{eff}sim$95kK) and high luminosity of the central star of the nebula are not consistent with post-RGB evolutionary tracks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا