Do you want to publish a course? Click here

The post-common-envelope binary central star of the planetary nebula PN G283.7-05.1: A possible post-red-giant-branch planetary nebula central star

73   0   0.0 ( 0 )
 Added by David Jones
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery and characterisation of the post-common-envelope central star system in the planetary nebula PN G283.7$-$05.1. Deep images taken as part of the POPIPlaN survey indicate that the nebula may possess a bipolar morphology similar to other post-common-envelope planetary nebulae. Simultaneous light and radial velocity curve modelling reveals the newly discovered binary system to comprise a highly-irradiated, M-type main-sequence star in a 5.9 hour orbit with a hot pre-white-dwarf. The nebular progenitor is found to have a particularly low mass of around 0.4 M$_odot$, making PN G283.7$-$05.1 one of only a handful of candidate planetary nebulae to be the product of a common-envelope event while still on the red giant branch. Beyond its low mass, the model temperature, surface gravity and luminosity are all found to be consistent with the observed stellar and nebular spectra through comparison with model atmospheres and photoionisation modelling. However, the high temperature (T$_mathrm{eff}sim$95kK) and high luminosity of the central star of the nebula are not consistent with post-RGB evolutionary tracks.



rate research

Read More

We present a detailed study of the binary central star of the planetary nebula ETHOS 1 (PN G068.1+11.0). Simultaneous modelling of light and radial velocity curves reveals the binary to comprise a hot and massive pre-white-dwarf with an M-type main-sequence companion. A good fit to the observations was found with a companion that follows expected mass-temperature-radius relationships for low-mass stars, indicating that despite being highly irradiated it is consistent with not being significantly hotter or larger than a typical star of the same mass. Previous modelling indicated that ETHOS 1 may comprise the first case where the orbital plane of the central binary does not lie perpendicular to the nebular symmetry axis, at odds with the expectation that the common envelope is ejected in the orbital plane. We find no evidence for such a discrepancy, deriving a binary inclination in agreement with that of the nebula as determined by spatio-kinematic modelling. This makes ETHOS 1 the ninth post-common-envelope planetary nebula in which the binary orbital and nebular symmetry axes have been shown to be aligned, with as yet no known counter-examples. The probability of finding such a correlation by chance is now less than 0.00002%.
We report on the discovery of ETHOS 1 (PN G068.1+11.0), the first spectroscopically confirmed planetary nebula (PN) from a survey of the SuperCOSMOS Science Archive for high-latitude PNe. ETHOS 1 stands out as one of the few PNe to have both polar outflows (jets) travelling at $120pm10$ km/s and a close binary central star. The lightcurve observed with the Mercator telescope reveals an orbital period of 0.535 days and an extremely large amplitude (0.816 mag) due to irradiation of the companion by a very hot pre-white dwarf. ETHOS 1 further strengthens the long suspected link between binary central stars of planetary nebulae (CSPN) and jets. INT IDS and VLT FORS spectroscopy of the CSPN reveals weak N III, C III and C IV emission lines seen in other close binary CSPN and suggests many CSPN with these weak emission lines are misclassified close binaries. We present VLT FORS imaging and Manchester Echelle Spectrometer long slit observations from which a kinematic model of the nebula is built. An unusual combination of bipolar outflows and a spherical nebula conspire to produce an $X$-shaped appearance. The kinematic age of the jets ($1750pm250$ yrs/kpc) are found to be older than the inner nebula ($900pm100$ yrs/kpc) consistent with previous studies of similar PNe. Emission line ratios of the jets are found to be consistent with reverse-shock models for fast low-ionisation emitting regions (FLIERS) in PNe. Further large-scale surveys for close binary CSPN will be required to securely establish whether FLIERS are launched by close binaries.
The Chandra X-ray Observatory has detected relatively hard X-ray emission from the central stars of several planetary nebulae (PNe). A subset have no known late-type companions, making it very difficult to isolate which of several competing mechanisms may be producing the X-ray emission. The central star of NGC 2392 is one of the most vexing members, with substantial indirect evidence for a hot white dwarf (WD) companion. Here we report on the results of a radial velocity (RV) monitoring campaign of its central star with the HERMES echelle spectrograph of the Flemish 1.2 m Mercator telescope. We discover a single-lined spectroscopic binary with an orbital period of $1.902208pm0.000013$ d and a RV semi-amplitude of $9.96pm0.13$ km/s. The high degree of nebula ionisation requires a WD companion ($Mgtrsim0.6 M_odot$), which the mass-function supports at orbital inclinations $lesssim$7 deg, in agreement with the nebula orientation of 9 deg. The hard component of the X-ray spectrum may be explained by the companion accreting mass from the wind of the Roche lobe filling primary, while the softer component may be due to colliding winds. A companion with a stronger wind than the primary could produce the latter and would be consistent with models of the observed diffuse X-ray emission detected in the nebula. The diffuse X-rays may also be powered by the jets of up to 180 km/s and active accretion would imply that they could be the first active jets of a post-common-envelope PN, potentially making NGC 2392 an invaluable laboratory to study jet formation physics. The 1.9 d orbital period rules out a double-degenerate merger leading to a Type Ia supernova and the weak wind of the primary likely also precludes a single-degenerate scenario. We suggest that a hard X-ray spectrum, in the absence of a late-type companion, could be a powerful tool to identify accreting WD companions.
178 - Brent Miszalski 2015
Nearly 50 post-common-envelope (post-CE) close binary central stars of planetary nebulae (CSPNe) are now known. Most contain either main sequence or white dwarf (WD) companions that orbit the WD primary in around 0.1-1.0 days. Only PN~G222.8-04.2 and NGC~5189 have post-CE CSPNe with a Wolf-Rayet star primary (denoted [WR]), the low-mass analogues of massive Wolf-Rayet stars. It is not well understood how H-deficient [WR] CSPNe form, even though they are relatively common, appearing in over 100 PNe. The discovery and characterisation of post-CE [WR] CSPNe is essential to determine whether proposed binary formation scenarios are feasible to explain this enigmatic class of stars. The existence of post-CE [WR] binaries alone suggests binary mergers are not necessarily a pathway to form [WR] stars. Here we give an overview of the initial results of a radial velocity monitoring programme of [WR] CSPNe to search for new binaries. We discuss the motivation for the survey and the associated strong selection effects. The mass functions determined for PN~G222.8-04.2 and NGC~5189, together with literature photometric variability data of other [WR] CSPNe, suggest that of the post-CE [WR] CSPNe yet to be found, most will have WD or subdwarf O/B-type companions in wider orbits than typical post-CE CSPNe (several days or months c.f. less than a day).
We present the first detailed spatio-kinematical analysis and modelling of the planetary nebula Abell 41, which is known to contain the well-studied close-binary system MT Ser. This object represents an important test case in the study of the evolution of planetary nebulae with binary central stars as current evolutionary theories predict that the binary plane should be aligned perpendicular to the symmetry axis of the nebula. Deep narrowband imaging in the light of [NII], [OIII] and [SII], obtained using ACAM on the William Herschel Telescope, has been used to investigate the ionisation structure of Abell 41. Longslit observations of the H-alpha and [NII] emission were obtained using the Manchester Echelle Spectrometer on the 2.1-m San Pedro Martir Telescope. These spectra, combined with the narrowband imagery, were used to develop a spatio-kinematical model of [NII] emission from Abell 41. The best fitting model reveals Abell 41 to have a waisted, bipolar structure with an expansion velocity of ~40kms at the waist. The symmetry axis of the model nebula is within 5$degr$ of perpendicular to the orbital plane of the central binary system. This provides strong evidence that the close-binary system, MT Ser, has directly affected the shaping of its nebula, Abell 41. Although the theoretical link between bipolar planetary nebulae and binary central stars is long established, this nebula is only the second to have this link, between nebular symmetry axis and binary plane, proved observationally.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا