Do you want to publish a course? Click here

PN fast winds: Temporal structure and stellar rotation

185   0   0.0 ( 0 )
 Added by Raman Prinja
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

To diagnose the time-variable structure in the fast winds of central stars of planetary nebulae (CSPN), we present an analysis of P Cygni line profiles in FUSE satellite far-UV spectroscopic data. Archival spectra are retrieved to form time-series datasets for the H-rich CSPN NGC 6826, IC 418, IC 2149, IC 4593 and NGC 6543. Despite limitations due to the fragmented sampling of the time-series, we demonstrate that in all 5 CSPN the UV resonance lines are variable primarily due to the occurrence of blueward migrating discrete absorption components (DACs). Empirical (SEI) line-synthesis modelling is used to determine the range of fluctuations in radial optical depth, which are assigned to the temporal changes in large-scale wind structures. We argue that DACs are common in CSPN winds, and their empirical properties are akin to those of similar structures seen in the absorption troughs of massive OB stars. Constraints on PN central star rotation velocities are derived from Fast-Fourier Transform analysis of photospheric lines for our target stars. Favouring the causal role of co-rotating interaction regions, we explore connections between normalised DAC accelerations and rotation rates of PN central stars and O stars. The comparative properties suggest that the same physical mechanism is acting to generate large-scale structure in the line-driven winds in the two different settings.



rate research

Read More

172 - J. M. Pittard , B. Dawson 2018
We investigate the structure and X-ray emission from the colliding stellar winds in massive star binaries. We find that the opening angle of the contact discontinuity (CD) is overestimated by several formulae in the literature at very small values of the wind momentum ratio. We find also that the shocks in the primary (dominant) and secondary winds flare by approx 20 degrees compared to the CD, and that the entire secondary wind is shocked when the wind momentum ratio < 0.02. Analytical expressions for the opening angles of the shocks, and the fraction of each wind that is shocked, are provided. We find that the X-ray luminosity scales with the wind momentum ratio, and that the spectrum softens slightly as the wind momentum ratio decreases.
We present HST/STIS time-series spectroscopy of the central star of the Cats Eye planetary nebula NGC 6543. Intensive monitoring of the UV lines over a 5.8 hour period reveals well defined details of large-scale structure in the fast wind, which are exploited to provide new constraints on the rotation rate of the central star. We derive characteristics of the line profile variability that support a physical origin due to co-rotating interaction regions (CIRs) that are rooted at the stellar surface. The recurrence time of the observed spectral signatures of the CIRs is used to estimate the rotation period of the central star and, adopting a radius between 0.3 and 0.6 Rsun constrains the rotational velocity to the range 54 leq v_{rot} leq 108 kms. The implications of these results for single star evolution are discussed based on models calculated here for low-mass stars. Our models predict a sub-surface convective layer in NGC 6543 which we argue to be causally connected to the occurrence of structure in the fast wind.
194 - R. Blomme 2009
Almost all early-type stars show Discrete Absorption Components (DACs) in their ultraviolet spectral lines. These can be attributed to Co-rotating Interaction Regions (CIRs): large-scale spiral-shaped structures that sweep through the stellar wind. We used the Zeus hydrodynamical code to model the CIRs. In the model, the CIRs are caused by spots on the stellar surface. Through the radiative acceleration these spots create fast streams in the stellar wind material. Where the fast and slow streams collide, a CIR is formed. By varying the parameters of the spots, we quantitatively fit the observed DACs in HD 64760. An important result from our work is that the spots do not rotate with the same velocity as the stellar surface. The fact that the cause of the CIRs is not fixed on the surface eliminates many potential explanations. The only remaining explanation is that the CIRs are due to the interference pattern of a number of non-radial pulsations.
Recent studies of fast radio bursts (FRBs) have led to many theories associating them with young neutron stars. If this is the case, then the presence of supernova ejecta and stellar winds provide a changing dispersion measure (DM) and rotation measure (RM) that can potentially be probes of the environments of FRB progenitors. Here we summarize the scalings for the DM and RM in the cases of a constant density ambient medium and of a progenitor stellar wind. Since the amount of ionized material is controlled by the dynamics of the reverse shock, we find the DM changes more slowly than in previous simpler work, which simply assumed a constant ionization fraction. Furthermore, the DM can be constant or even increasing as the supernova remnant sweeps up material, arguing that a young neutron star hypothesis for FRBs is not ruled out if the DM is not decreasing over repeated bursts. The combined DM and RM measurements for the repeating FRB 121102 are consistent with supernova ejecta with an age of $sim10^2-10^3,{rm yrs}$ expanding into a high density ($sim100,{rm cm^{-3}}$) interstellar medium. This naturally explains its relatively constant DM over many years as well. Other FRBs with much lower RMs may indicate that they are especially young supernovae in wind environments or that their DMs are largely from the intergalactic medium. We therefore caution about inferring magnetic fields from simply by dividing an RM by DM, because these quantities could originate from distinct regions along the path an FRB propagates.
129 - Daniel R. Reese 2015
Massive and intermediate mass stars play a crucial role in astrophysics. Indeed, massive stars are the main producers of heavy elements, explode in supernovae at the end of their short lifetimes, and may be the progenitors of gamma ray bursts. Intermediate mass stars, although not destined to explode in supernovae, display similar phenomena, are much more numerous, and have some of the richest pulsation spectra. A key to understanding these stars is understanding the effects of rapid rotation on their structure and evolution. These effects include centrifugal deformation and gravity darkening which can be observed immediately, and long terms effects such as rotational mixing due to shear turbulence, which prolong stellar lifetime, modify chemical yields, and impact the stellar remnant at the end of their lifetime. In order to understand these effects, a number of models have been and are being developed over the past few years. These models lead to increasingly sophisticated predictions which need to be tested through observations. A particularly promising source of constraints is seismic observations as these may potentially lead to detailed information on their internal structure. However, before extracting such information, a number of theoretical and observational hurdles need to be overcome, not least of which is mode identification. The present proceedings describe recent progress in modelling these stars and show how an improved understanding of their pulsations, namely frequency patterns, mode visibilities, line profile variations, and mode excitation, may help with deciphering seismic observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا