No Arabic abstract
This short papers discusses the issues of teaching cloud computing from a software engineering rather than a business perspective. It discusses what topics might be covered in a senior course on cloud software engineering.
Sentiment analysis can provide a suitable lead for the tools used in software engineering along with the API recommendation systems and relevant libraries to be used. In this context, the existing tools like SentiCR, SentiStrength-SE, etc. exhibited low f1-scores that completely defeats the purpose of deployment of such strategies, thereby there is enough scope for performance improvement. Recent advancements show that transformer based pre-trained models (e.g., BERT, RoBERTa, ALBERT, etc.) have displayed better results in the text classification task. Following this context, the present research explores different BERT-based models to analyze the sentences in GitHub comments, Jira comments, and Stack Overflow posts. The paper presents three different strategies to analyse BERT based model for sentiment analysis, where in the first strategy the BERT based pre-trained models are fine-tuned; in the second strategy an ensemble model is developed from BERT variants, and in the third strategy a compressed model (Distil BERT) is used. The experimental results show that the BERT based ensemble approach and the compressed BERT model attain improvements by 6-12% over prevailing tools for the F1 measure on all three datasets.
The COVID-19 pandemic significantly disrupted the educational sector. Faced with this life-threatening pandemic, educators had to swiftly pivot to an alternate form of course delivery without severely impacting the quality of the educational experience. Following the transition to online learning, educators had to grapple with a host of challenges. With interrupted face-to-face delivery, limited access to state-of-the-art labs, barriers with educational technologies, challenges of academic integrity, and obstacles with remote teamwork and student participation, creative solutions were urgently needed. In this chapter, we provide a rationale for a variety of course delivery models at different stages of the pandemic and highlight the approaches we took to overcome some of the pressing challenges of remote education. We also discuss how we ensured that hands-on learning remains an integral part of engineering curricula, and we argue that some of the applied changes during the pandemic will likely serve as a catalyst for modernizing education.
Software-defined internet of vehicles (SDIoV) has emerged as a promising paradigm to realize flexible and comprehensive resource management, for next generation automobile transportation systems. In this paper, a vehicular cloud computing-based SDIoV framework is studied wherein the joint allocation of transmission power and graph job is formulated as a nonlinear integer programming problem. To effectively address the problem, a structure-preservation-based two-stage allocation scheme is proposed that decouples template searching from power allocation. Specifically, a hierarchical tree-based random subgraph isomorphism mechanism is applied in the first stage by identifying potential mappings (templates) between the components of graph jobs and service providers. A structure-preserving simulated annealing-based power allocation algorithm is adopted in the second stage to achieve the trade-off between the job completion time and energy consumption. Extensive simulations are conducted to verify the performance of the proposed algorithms.
The standard nature of computing is currently being challenged by a range of problems that start to hinder technological progress. One of the strategies being proposed to address some of these problems is to develop novel brain-inspired processing methods and technologies, and apply them to a wide range of application scenarios. This is an extremely challenging endeavor that requires researchers in multiple disciplines to combine their efforts and co-design at the same time the processing methods, the supporting computing architectures, and their underlying technologies. The journal ``Neuromorphic Computing and Engineering (NCE) has been launched to support this new community in this effort and provide a forum and repository for presenting and discussing its latest advances. Through close collaboration with our colleagues on the editorial team, the scope and characteristics of NCE have been designed to ensure it serves a growing transdisciplinary and dynamic community across academia and industry.
Quantum computing harnesses quantum laws of nature to enable new types of algorithms, not efficiently possible on traditional computers, that may lead to breakthroughs in crucial areas like materials science and chemistry. There is rapidly growing demand for a quantum workforce educated in the basics of quantum computing, in particular in quantum programming. However, there are few offerings for non-specialists and little information on best practices for training computer science and engineering students. In this report we describe our experience teaching an undergraduate course on quantum computing using a practical, software-driven approach. We centered our course around teaching quantum algorithms through hands-on programming, reducing the significance of traditional written assignments and relying instead on self-paced programming exercises (Quantum Katas), a variety of programming assignments, and a final project. We observed that the programming sections of the course helped students internalize theoretical material presented during the lectures. In the survey results, students indicated that the programming exercises and the final project contributed the most to their learning process. We describe the motivation for centering the course around quantum programming, discuss major artifacts used in this course, and present our lessons learned and best practices for a future improved course offering. We hope that our experience will help guide instructors who want to adopt a practical approach to teaching quantum computing and will enable more undergraduate programs to offer quantum programming as an elective.