Do you want to publish a course? Click here

Introducing Neuromorphic Computing and Engineering

284   0   0.0 ( 0 )
 Added by Giacomo Indiveri
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The standard nature of computing is currently being challenged by a range of problems that start to hinder technological progress. One of the strategies being proposed to address some of these problems is to develop novel brain-inspired processing methods and technologies, and apply them to a wide range of application scenarios. This is an extremely challenging endeavor that requires researchers in multiple disciplines to combine their efforts and co-design at the same time the processing methods, the supporting computing architectures, and their underlying technologies. The journal ``Neuromorphic Computing and Engineering (NCE) has been launched to support this new community in this effort and provide a forum and repository for presenting and discussing its latest advances. Through close collaboration with our colleagues on the editorial team, the scope and characteristics of NCE have been designed to ensure it serves a growing transdisciplinary and dynamic community across academia and industry.



rate research

Read More

Neuromorphic computing systems uses non-volatile memory (NVM) to implement high-density and low-energy synaptic storage. Elevated voltages and currents needed to operate NVMs cause aging of CMOS-based transistors in each neuron and synapse circuit in the hardware, drifting the transistors parameters from their nominal values. Aggressive device scaling increases power density and temperature, which accelerates the aging, challenging the reliable operation of neuromorphic systems. Existing reliability-oriented techniques periodically de-stress all neuron and synapse circuits in the hardware at fixed intervals, assuming worst-case operating conditions, without actually tracking their aging at run time. To de-stress these circuits, normal operation must be interrupted, which introduces latency in spike generation and propagation, impacting the inter-spike interval and hence, performance, e.g., accuracy. We propose a new architectural technique to mitigate the aging-related reliability problems in neuromorphic systems, by designing an intelligent run-time manager (NCRTM), which dynamically destresses neuron and synapse circuits in response to the short-term aging in their CMOS transistors during the execution of machine learning workloads, with the objective of meeting a reliability target. NCRTM de-stresses these circuits only when it is absolutely necessary to do so, otherwise reducing the performance impact by scheduling de-stress operations off the critical path. We evaluate NCRTM with state-of-the-art machine learning workloads on a neuromorphic hardware. Our results demonstrate that NCRTM significantly improves the reliability of neuromorphic hardware, with marginal impact on performance.
Modern computation based on the von Neumann architecture is today a mature cutting-edge science. In this architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex and unstructured data as our brain does. Neuromorphic computing systems are aimed at addressing these needs. The human brain performs about 10^15 calculations per second using 20W and a 1.2L volume. By taking inspiration from biology, new generation computers could have much lower power consumption than conventional processors, could exploit integrated non-volatile memory and logic, and could be explicitly designed to support dynamic learning in the context of complex and unstructured data. Among their potential future applications, business, health care, social security, disease and viruses spreading control might be the most impactful at societal level. This roadmap envisages the potential applications of neuromorphic materials in cutting edge technologies and focuses on the design and fabrication of artificial neural systems. The contents of this roadmap will highlight the interdisciplinary nature of this activity which takes inspiration from biology, physics, mathematics, computer science and engineering. This will provide a roadmap to explore and consolidate new technology behind both present and future applications in many technologically relevant areas.
Neuromorphic computing systems such as DYNAPs and Loihi have recently been introduced to the computing community to improve performance and energy efficiency of machine learning programs, especially those that are implemented using Spiking Neural Network (SNN). The role of a system software for neuromorphic systems is to cluster a large machine learning model (e.g., with many neurons and synapses) and map these clusters to the computing resources of the hardware. In this work, we formulate the energy consumption of a neuromorphic hardware, considering the power consumed by neurons and synapses, and the energy consumed in communicating spikes on the interconnect. Based on such formulation, we first evaluate the role of a system software in managing the energy consumption of neuromorphic systems. Next, we formulate a simple heuristic-based mapping approach to place the neurons and synapses onto the computing resources to reduce energy consumption. We evaluate our approach with 10 machine learning applications and demonstrate that the proposed mapping approach leads to a significant reduction of energy consumption of neuromorphic computing systems.
The deployment of the next generation computing platform at ExaFlops scale requires to solve new technological challenges mainly related to the impressive number (up to 10^6) of compute elements required. This impacts on system power consumption, in terms of feasibility and costs, and on system scalability and computing efficiency. In this perspective analysis, exploration and evaluation of technologies characterized by low power, high efficiency and high degree of customization is strongly needed. Among the various European initiative targeting the design of ExaFlops system, ExaNeSt and EuroExa are EU-H2020 funded initiatives leveraging on high end MPSoC FPGAs. Last generation MPSoC FPGAs can be seen as non-mainstream but powerful HPC Exascale enabling components thanks to the integration of embedded multi-core, ARM-based low power CPUs and a huge number of hardware resources usable to co-design application oriented accelerators and to develop a low latency high bandwidth network architecture. In this paper we introduce ExaNet the FPGA-based, scalable, direct network architecture of ExaNeSt system. ExaNet allow us to explore different interconnection topologies, to evaluate advanced routing functions for congestion control and fault tolerance and to design specific hardware components for acceleration of collective operations. After a brief introduction of the motivations and goals of ExaNeSt and EuroExa projects, we will report on the status of network architecture design and its hardware/software testbed adding preliminary bandwidth and latency achievements.
Scientific computing sometimes involves computation on sensitive data. Depending on the data and the execution environment, the HPC (high-performance computing) user or data provider may require confidentiality and/or integrity guarantees. To study the applicability of hardware-based trusted execution environments (TEEs) to enable secure scientific computing, we deeply analyze the performance impact of AMD SEV and Intel SGX for diverse HPC benchmarks including traditional scientific computing, machine learning, graph analytics, and emerging scientific computing workloads. We observe three main findings: 1) SEV requires careful memory placement on large scale NUMA machines (1$times$$-$3.4$times$ slowdown without and 1$times$$-$1.15$times$ slowdown with NUMA aware placement), 2) virtualization$-$a prerequisite for SEV$-$results in performance degradation for workloads with irregular memory accesses and large working sets (1$times$$-$4$times$ slowdown compared to native execution for graph applications) and 3) SGX is inappropriate for HPC given its limited secure memory size and inflexible programming model (1.2$times$$-$126$times$ slowdown over unsecure execution). Finally, we discuss forthcoming new TEE designs and their potential impact on scientific computing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا