We explore a systematic approach to studying the dynamics of evolving networks at a coarse-grained, system level. We emphasize the importance of finding good observables (network properties) in terms of which coarse grained models can be developed. We illustrate our approach through a particular social network model: the rise and fall of a networked society [1]: we implement our low-dimensional description computationally using the equation-free approach and show how it can be used to (a) accelerate simulations and (b) extract system-level stability/bifurcation information from the detailed dynamic model. We discuss other system-level tasks that can be enabled through such a computer-assisted coarse graining approach.
The electoral college of voting system for the US presidential election is analogous to a coarse graining procedure commonly used to study phase transitions in physical systems. In a recent paper, opinion dynamics models manifesting a phase transition, were shown to be able to explain the cases when a candidate winning more number of popular votes could still lose the general election on the basis of the electoral college system. We explore the dependence of such possibilities on various factors like the number of states and total population (i.e., system sizes) and get an interesting scaling behavior. In comparison with the real data, it is shown that the probability of the minority win, calculated within the model assumptions, is indeed near the highest possible value. In addition, we also implement a two step coarse graining procedure, relevant for both opinion dynamics and information theory.
We develop coarse-graining tensor renormalization group algorithms to compute physical properties of two-dimensional lattice models on finite periodic lattices. Two different coarse-graining strategies, one based on the tensor renormalization group and the other based on the higher-order tensor renormalization group, are introduced. In order to optimize the tensor-network model globally, a sweeping scheme is proposed to account for the renormalization effect from the environment tensors under the framework of second renormalization group. We demonstrate the algorithms by the classical Ising model on the square lattice and the Kitaev model on the honeycomb lattice, and show that the finite-size algorithms achieve substantially more accurate results than the corresponding infinite-size ones.
Using an information theoretic point of view, we investigate how a dynamics acting on a network can be coarse grained through the use of graph partitions. Specifically, we are interested in how aggregating the state space of a Markov process according to a partition impacts on the thus obtained lower-dimensional dynamics. We highlight that for a dynamics on a particular graph there may be multiple coarse grained descriptions that capture different, incomparable features of the original process. For instance, a coarse graining induced by one partition may be commensurate with a time-scale separation in the dynamics, while another coarse graining may correspond to a different lower-dimensional dynamics that preserves the Markov property of the original process. Taking inspiration from the literature of Computational Mechanics, we find that a convenient tool to summarise and visualise such dynamical properties of a coarse grained model (partition) is the entrogram. The entrogram gathers certain information-theoretic measures, which quantify how information flows across time steps. These information theoretic quantities include the entropy rate, as well as a measure for the memory contained in the process, i.e., how well the dynamics can be approximated by a first order Markov process. We use the entrogram to investigate how specific macro-scale connection patterns in the state-space transition graph of the original dynamics result in desirable properties of coarse grained descriptions. We thereby provide a fresh perspective on the interplay between structure and dynamics in networks, and the process of partitioning from an information theoretic perspective. We focus on networks that may be approximated by both a core-periphery or a clustered organization, and highlight that each of these coarse grained descriptions can capture different aspects of a Markov process acting on the network.
Our everyday descriptions of the universe are highly coarse-grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of observation and computation. But in the modern quantum mechanics of closed systems, some measure of coarse graining is inescapable because there are no non-trivial, probabilistic, fine-grained descriptions. This essay explores the consequences of that fact. Quantum theory allows for various coarse-grained descriptions some of which are mutually incompatible. For most purposes, however, we are interested in the small subset of ``quasiclassical descriptions defined by ranges of values of averages over small volumes of densities of conserved quantities such as energy and momentum and approximately conserved quantities such as baryon number. The near-conservation of these quasiclassical quantities results in approximate decoherence, predictability, and local equilibrium, leading to closed sets of equations of motion. In any description, information is sacrificed through the coarse graining that yields decoherence and gives rise to probabilities for histories. In quasiclassical descriptions, further information is sacrificed in exhibiting the emergent regularities summarized by classical equations of motion. An appropriate entropy measures the loss of information. For a ``quasiclassical realm this is connected with the usual thermodynamic entropy as obtained from statistical mechanics. It was low for the initial state of our universe and has been increasing since.
We propose and illustrate an approach to coarse-graining the dynamics of evolving networks (networks whose connectivity changes dynamically). The approach is based on the equation-free framework: short bursts of detailed network evolution simulations are coupled with lifting and restriction operators that translate between actual network realizations and their (appropriately chosen) coarse observables. This framework is used here to accelerate temporal simulations (through coarse projective integration), and to implement coarsegrained fixed point algorithms (through matrix-free Newton-Krylov GMRES). The approach is illustrated through a simple network evolution example, for which analytical approximations to the coarse-grained dynamics can be independently obtained, so as to validate the computational results. The scope and applicability of the approach, as well as the issue of selection of good coarse observables are discussed.
Andreas C. Tsoumanis
,Karthikeyan Rajendran
,Constantinos I. Siettosn
.
(2012)
.
"Coarse-graining the dynamics of network evolution: the rise and fall of a networked society"
.
Karthikeyan Rajendran
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا