No Arabic abstract
The electoral college of voting system for the US presidential election is analogous to a coarse graining procedure commonly used to study phase transitions in physical systems. In a recent paper, opinion dynamics models manifesting a phase transition, were shown to be able to explain the cases when a candidate winning more number of popular votes could still lose the general election on the basis of the electoral college system. We explore the dependence of such possibilities on various factors like the number of states and total population (i.e., system sizes) and get an interesting scaling behavior. In comparison with the real data, it is shown that the probability of the minority win, calculated within the model assumptions, is indeed near the highest possible value. In addition, we also implement a two step coarse graining procedure, relevant for both opinion dynamics and information theory.
We explore a systematic approach to studying the dynamics of evolving networks at a coarse-grained, system level. We emphasize the importance of finding good observables (network properties) in terms of which coarse grained models can be developed. We illustrate our approach through a particular social network model: the rise and fall of a networked society [1]: we implement our low-dimensional description computationally using the equation-free approach and show how it can be used to (a) accelerate simulations and (b) extract system-level stability/bifurcation information from the detailed dynamic model. We discuss other system-level tasks that can be enabled through such a computer-assisted coarse graining approach.
We study the joint evolution of worldviews by proposing a model of opinion dynamics, which is inspired in notions from evolutionary ecology. Agents update their opinion on a specific issue based on their propensity to change -- asserted by the social neighbours -- weighted by their mutual similarity on other issues. Agents are, therefore, more influenced by neighbours with similar worldviews (set of opinions on various issues), resulting in a complex co-evolution of each opinion. Simulations show that the worldview evolution exhibits events of intermittent polarization when the social network is scale-free. This, in turn, trigger extreme crashes and surges in the popularity of various opinions. Using the proposed model, we highlight the role of network structure, bounded rationality of agents, and the role of key influential agents in causing polarization and intermittent reformation of worldviews on scale-free networks.
Using an information theoretic point of view, we investigate how a dynamics acting on a network can be coarse grained through the use of graph partitions. Specifically, we are interested in how aggregating the state space of a Markov process according to a partition impacts on the thus obtained lower-dimensional dynamics. We highlight that for a dynamics on a particular graph there may be multiple coarse grained descriptions that capture different, incomparable features of the original process. For instance, a coarse graining induced by one partition may be commensurate with a time-scale separation in the dynamics, while another coarse graining may correspond to a different lower-dimensional dynamics that preserves the Markov property of the original process. Taking inspiration from the literature of Computational Mechanics, we find that a convenient tool to summarise and visualise such dynamical properties of a coarse grained model (partition) is the entrogram. The entrogram gathers certain information-theoretic measures, which quantify how information flows across time steps. These information theoretic quantities include the entropy rate, as well as a measure for the memory contained in the process, i.e., how well the dynamics can be approximated by a first order Markov process. We use the entrogram to investigate how specific macro-scale connection patterns in the state-space transition graph of the original dynamics result in desirable properties of coarse grained descriptions. We thereby provide a fresh perspective on the interplay between structure and dynamics in networks, and the process of partitioning from an information theoretic perspective. We focus on networks that may be approximated by both a core-periphery or a clustered organization, and highlight that each of these coarse grained descriptions can capture different aspects of a Markov process acting on the network.
Stochastic modelling of complex systems plays an essential, yet often computationally intensive role across the quantitative sciences. Recent advances in quantum information processing have elucidated the potential for quantum simulators to exhibit memory advantages for such tasks. Heretofore, the focus has been on lossless memory compression, wherein the advantage is typically in terms of lessening the amount of information tracked by the model, while -- arguably more practical -- reductions in memory dimension are not always possible. Here we address the case of lossy compression for quantum stochastic modelling of continuous-time processes, introducing a method for coarse-graining in quantum state space that drastically reduces the requisite memory dimension for modelling temporal dynamics whilst retaining near-exact statistics. In contrast to classical coarse-graining, this compression is not based on sacrificing temporal resolution, and brings memory-efficient, high-fidelity stochastic modelling within reach of present quantum technologies.
In this work we study the opinion evolution in a community-based population with intergroup interactions. We address two issues. First, we consider that such intergroup interactions can be negative with some probability $p$. We develop a coupled mean-field approximation that still preserves the community structure and it is able to capture the richness of the results arising from our Monte Carlo simulations: continuous and discontinuous order-disorder transitions as well as nonmonotonic ordering for an intermediate community strength. In the second part, we consider only positive interactions, but with the presence of inflexible agents holding a minority opinion. We also consider an indecision noise: a probability $q$ that allows the spontaneous change of opinions to the neutral state. Our results show that the modular structure leads to a nonmonotonic global ordering as $q$ increases. This inclination toward neutrality plays a dual role: a moderated propensity to neutrality helps the initial minority to become a majority, but this noise-driven opinion switching becomes less pronounced if the agents are too susceptible to become neutral.