Do you want to publish a course? Click here

Hypernuclear Physics at PANDA

136   0   0.0 ( 0 )
 Added by Patrick Achenbach
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Anti-proton and Ion Research FAIR at Darmstadt, Germany. A copious production of Xi-hyperons at a dedicated internal target in the stored anti-proton beam is expected, which will enable the high-precision gamma-spectroscopy of double strange systems for the first time. In addition to the general purpose PANDA setup, the hypernuclear experiments require an active secondary target of silicon layers and absorber material as well as high purity germanium (HPGe) crystals as gamma-detectors. The design of the setup and the development of these detectors is progressing: a first HPGe crystal with a new electromechanical cooling system was prepared and the properties of a silicon strip detector as a prototype to be used in the secondary target were studied. Simultaneously to the hardware projects, detailed Monte Carlo simulations were performed to predict the yield of particle stable hypernuclei. With the help of the Monte Carlo a procedure for Lambda-Lambda-hypernuclei identification by the detection and correlation of the weak decay pions was developed.



rate research

Read More

The technical design of the PANDA experiment at the future FAIR facility next to GSI is progressing. At the proposed anti-proton storage ring the spectroscopy of double Lambda hypernuclei is one of the four main topics which will be addressed by the Collaboration. The hypernuclear experiments require (i) a dedicated internal target, (ii) an active secondary target of alternating silicon and absorber material layers, (iii) high purity germanium (HPGe) detectors, and (iv) a good particle identification system for low momentum kaons. All systems need to operate in the presence of a high magnetic field and a large hadronic background. The status of the detector developments for this programme is summarized.
140 - Inti Lehmann 2009
The standard model and Quantum Chromodynamics (QCD) have undergone rigorous tests at distances much shorter than the size of a nucleon. Up to now, the predicted phenomena are reproduced rather well. However, at distances comparable to the size of a nucleon, new experimental results keep appearing which cannot be described consistently by effective theories based on QCD. The physics of strange and charmed quarks holds the potential to connect the two energy domains, interpolating between the limiting scales of QCD. This is the regime which will be explored using the future Antiproton Annihilations at Darmstadt (PANDA) experiment at the Facility for Antiproton and Ion Research (FAIR). In this contribution some of the most relevant physics topics are detailed; and the reason why PANDA is the ideal detector to study them is given. Precision studies of hadron formation in the charmonium region will greatly advance our understanding of hadronic structure. It may reveal particles beyond the two and three-quark configuration, some of which are predicted to have exotic quantum numbers in that mass region. It will deepen the understanding of the charmonium spectrum, where unpredicted states have been found recently by the B-factories. To date the structure of the nucleon, in terms of parton distributions, has been mainly investigated using scattering experiments. Complementary information will be acquired measuring electro-magnetic final states at PANDA.
789 - Patrick Achenbach 2011
In the new millennium hypernuclear physics is undergoing a renewed interest, both theoretically and experimentally.
119 - Elisabetta Prencipe 2014
The $bar PANDA$ experiment at FAIR (Facility for Antiproton and Ion Research) in Darmstadt (Germany) is designed for $bar p p$ annihilation studies and it will investigate fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei. Gluonic excitations and the physics of hadrons with strange and charm quarks will be accessible with unprecedented accuracy, thereby allowing high precision tests of the strong interactions. In particular, the $D_{s0}^*(2317)^+$ and $D_{s1}(2460)^+$ are still of high interest 11 years after their discovery, because they can not be simply understood in term of potential models. The available statistics and resolution of the past experiments did not allow to clarify their nature. Recently LHCb at CERN has made progresses in this respect, but still not at the level of precision required in order to clarify the puzzle of the $cs$-spectrum. $bar PANDA$ will be able to achieve a factor 20 higher mass resolution than attained at the B-factories, which is expected to be decisive on these and second-order open questions. The technique to evaluate the width from the excitation function of the cross section of the $D_s$ mesons will be presented, and ongoing simulations performed with $PandaRoot$ will be shown.
273 - Andrea Pocar 2018
We present the most recent solar neutrino results from the Borexino experiment at the Gran Sasso underground laboratory. In particular, refined measurements of all neutrinos produced in the {it pp} fusion chain have been made. It is the first time that the same detector measures the entire range of solar neutrinos at once. These new data weakly favor a high-metallicity Sun. Prospects for measuring CNO solar neutrinos are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا