Do you want to publish a course? Click here

Detector developments for the hypernuclear programme at PANDA

172   0   0.0 ( 0 )
 Added by Patrick Achenbach
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The technical design of the PANDA experiment at the future FAIR facility next to GSI is progressing. At the proposed anti-proton storage ring the spectroscopy of double Lambda hypernuclei is one of the four main topics which will be addressed by the Collaboration. The hypernuclear experiments require (i) a dedicated internal target, (ii) an active secondary target of alternating silicon and absorber material layers, (iii) high purity germanium (HPGe) detectors, and (iv) a good particle identification system for low momentum kaons. All systems need to operate in the presence of a high magnetic field and a large hadronic background. The status of the detector developments for this programme is summarized.



rate research

Read More

Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Anti-proton and Ion Research FAIR at Darmstadt, Germany. A copious production of Xi-hyperons at a dedicated internal target in the stored anti-proton beam is expected, which will enable the high-precision gamma-spectroscopy of double strange systems for the first time. In addition to the general purpose PANDA setup, the hypernuclear experiments require an active secondary target of silicon layers and absorber material as well as high purity germanium (HPGe) crystals as gamma-detectors. The design of the setup and the development of these detectors is progressing: a first HPGe crystal with a new electromechanical cooling system was prepared and the properties of a silicon strip detector as a prototype to be used in the secondary target were studied. Simultaneously to the hardware projects, detailed Monte Carlo simulations were performed to predict the yield of particle stable hypernuclei. With the help of the Monte Carlo a procedure for Lambda-Lambda-hypernuclei identification by the detection and correlation of the weak decay pions was developed.
66 - M. Schmidt 2019
The key component of the future PANDA experiment at FAIR is a fixed-target detector for collisions of antiprotons with a proton target up to a beam momentum of 15 GeV/c and is designed to address a large number of open questions in the hadron physics sector. In order to guarantee an excellent PID for charged hadrons in the polar angle range between $5^circ$ and $22^circ$, a new type of Cherenkov detector called Endcap Disc DIRC (EDD) has been developed for the forward endcap of the PANDA target spectrometer. The desired separation power of at least 3 s.d. for the separation of $pi^pm$ and $K^pm$ up to particle momenta of 4 GeV/c was determined with simulation studies and validated during various testbeam campaigns at CERN and DESY.
The aim of the MIMAC project is to detect non-baryonic Dark Matter with a directional TPC. The recent Micromegas efforts towards building a large size detector will be described, in particular the characterization measurements of a prototype detector of 10 $times$ 10 cm$^2$ with a 2 dimensional readout plane. Track reconstruction with alpha particles will be shown.
408 - C. Schwarz , A. Ali , A. Belias 2019
The PANDA experiment is one of the four large experiments being built at FAIR in Darmstadt. It will use a cooled antiproton beam on a fixed target within the momentum range of 1.5 to 15 GeV/c to address questions of strong QCD, where the coupling constant $alpha_s gtrsim 0.3$. The luminosity of up to $2 cdot 10^{32} cm^{-2}s^{-1}$ and the momentum resolution of the antiproton beam down to mbox{$Delta$p/p = 4$cdot10^{-5}$} allows for high precision spectroscopy, especially for rare reaction processes. Above the production threshold for open charm mesons the production of kaons plays an important role for identifying the reaction. The DIRC principle allows for a compact particle identification for charged particles in a hermetic detector, limited in size by the electromagnetic lead tungstate calorimeter. The Barrel DIRC in the target spectrometer covers polar angles between $22^circ$ and $140^circ$ and will achieve a pion-kaon separation of 3 standard deviations up to 3.5 GeV/$c$. Here, results of a test beam are shown for a single radiator bar coupled to a prism with $33^circ$ opening angle, both made from synthetic fused silica read out with a photon detector array with 768 pixels.
This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا