Do you want to publish a course? Click here

Hypernuclear physics as seen by an experimenter

745   0   0.0 ( 0 )
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

In the new millennium hypernuclear physics is undergoing a renewed interest, both theoretically and experimentally.

rate research

Read More

Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Anti-proton and Ion Research FAIR at Darmstadt, Germany. A copious production of Xi-hyperons at a dedicated internal target in the stored anti-proton beam is expected, which will enable the high-precision gamma-spectroscopy of double strange systems for the first time. In addition to the general purpose PANDA setup, the hypernuclear experiments require an active secondary target of silicon layers and absorber material as well as high purity germanium (HPGe) crystals as gamma-detectors. The design of the setup and the development of these detectors is progressing: a first HPGe crystal with a new electromechanical cooling system was prepared and the properties of a silicon strip detector as a prototype to be used in the secondary target were studied. Simultaneously to the hardware projects, detailed Monte Carlo simulations were performed to predict the yield of particle stable hypernuclei. With the help of the Monte Carlo a procedure for Lambda-Lambda-hypernuclei identification by the detection and correlation of the weak decay pions was developed.
The role of hypernuclear physics for the physics of neutron stars is delineated. Hypernuclear potentials in dense matter control the hyperon composition of dense neutron star matter. The three-body interactions of nucleons and hyperons determine the stiffness of the neutron star equation of state and thereby the maximum neutron star mass. Two-body hyperon-nucleon and hyperon-hyperon interactions give rise to hyperon pairing which exponentially suppresses cooling of neutron stars via the direct hyperon URCA processes. Non-mesonic weak reactions with hyperons in dense neutron star matter govern the gravitational wave emissions due to the r-mode instability of rotating neutron stars.
210 - Hirosi Ooguri 2009
These lecture notes review the topological string theory and its applications to mathematics and physics. They expand on material presented at the Takagi Lectures of the Mathematical Society of Japan on 21 June 2008 at Department of Mathematics, Kyoto University.
The experiment E94-107 in Hall A at Jefferson Lab started a systematic study of high resolution hypernuclear spectroscopy in the 0p-shell region of nuclei such as the hypernuclei produced in electroproduction on 9Be, 12C and 16O targets. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a ring-imaging Cherenkov detector were added to the Hall A standard equipment. The high-quality beam, the good spectrometers and the new experimental devices allowed us to obtain very good results. For the first time, measurable strength with sub-MeV energy resolution was observed for the core-excited states of Lambda 12B. A high-quality Lambda 16N hypernuclear spectrum was likewise obtained. A first measurement of the Lambda binding energy for Lambda 16N, calibrated against the elementary reaction on hydrogen, was obtained with high precision, 13.76 +/- 0.16 MeV. Similarly, the first Lambda 9Li hypernuclear spectrum shows general agreement with theory (distorted-wave impulse approximation with the SLA and BS3 electroproduction models and shell-model wave functions). Some disagreement exists with respect to the relative strength of the states making up the first multiplet. A Lambda separation energy of 8.36 MeV was obtained, in agreement with previous results. It has been shown that the electroproduction of hypernuclei can provide information complementary to that obtained with hadronic probes and the gamma-ray spectroscopy technique.
Aims. We study the long-term variability of the well-known Seyfert 2 galaxy Mrk 1210 (a.k.a. UGC 4203, or the Phoenix galaxy). Methods. The source was observed by many X-ray facilities in the last 20 years. Here we present a NuSTAR observation and put the results in context of previously published observations. Results. NuSTAR observed Mrk 1210 in 2012 for 15.4 ks. The source showed Compton-thin obscuration similar to that observed by Chandra, Suzaku, BeppoSAX and XMM-Newton over the past two decades, but different from the first observation by ASCA in 1995, in which the active nucleus was caught in a low flux state - or obscured by Compton-thick matter, with a reflection-dominated spectrum. Thanks to the high-quality hard X-ray spectrum obtained with NuSTAR and exploiting the long-term spectral coverage spanning 16.9 years, we can precisely disentangle the transmission and reflection components and put constraints on both the intrinsic long-term variability and hidden nucleus scenarios. In the former case, the distance between the reflector and the source must be at least ~ 2 pc, while in the latter one the eclipsing cloud may be identified with a water maser-emitting clump.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا