Do you want to publish a course? Click here

Physics Programme of PANDA at FAIR

140   0   0.0 ( 0 )
 Added by Inti Lehmann
 Publication date 2009
  fields
and research's language is English
 Authors Inti Lehmann




Ask ChatGPT about the research

The standard model and Quantum Chromodynamics (QCD) have undergone rigorous tests at distances much shorter than the size of a nucleon. Up to now, the predicted phenomena are reproduced rather well. However, at distances comparable to the size of a nucleon, new experimental results keep appearing which cannot be described consistently by effective theories based on QCD. The physics of strange and charmed quarks holds the potential to connect the two energy domains, interpolating between the limiting scales of QCD. This is the regime which will be explored using the future Antiproton Annihilations at Darmstadt (PANDA) experiment at the Facility for Antiproton and Ion Research (FAIR). In this contribution some of the most relevant physics topics are detailed; and the reason why PANDA is the ideal detector to study them is given. Precision studies of hadron formation in the charmonium region will greatly advance our understanding of hadronic structure. It may reveal particles beyond the two and three-quark configuration, some of which are predicted to have exotic quantum numbers in that mass region. It will deepen the understanding of the charmonium spectrum, where unpredicted states have been found recently by the B-factories. To date the structure of the nucleon, in terms of parton distributions, has been mainly investigated using scattering experiments. Complementary information will be acquired measuring electro-magnetic final states at PANDA.



rate research

Read More

Simulation results for future measurements of electromagnetic proton form factors at PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel $bar p p to e^+ e^-$ is studied on the basis of two different but consistent procedures. The suppression of the main background channel, $textit{i.e.}$ $bar p p to pi^+ pi^-$, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.
Exciting new scientific opportunities are presented for the PANDA detector at the High Energy Storage Ring in the redefined $bar{text{p}} text{p}(A)$ collider mode, HESR-C, at the Facility for Antiproton and Ion Research (FAIR) in Europe. The high luminosity, $L sim 10^{31}$ cm$^{-2}$ s$^{-1}$, and a wide range of intermediate and high energies, $sqrt{s_{text{NN}}}$ up to 30 GeV for $bar{text{p}} text{p}(A)$ collisions will allow to explore a wide range of exciting topics in QCD, including the study of the production of excited open charm and bottom states, nuclear bound states containing heavy (anti)quarks, the interplay of hard and soft physics in the dilepton production, and the exploration of the regime where gluons -- but not quarks -- experience strong interaction.
163 - Elisabetta Prencipe 2014
The Facility for Antiproton and Ion Research (FAIR) is an international accelerator facility which will use antiprotons and ions to perform research in the fields of nuclear, hadron and particle physics, atomic and anti-matter physics, high density plasma physics and applications in condensed matter physics, biology and the bio-medical sciences. It is located at Darmstadt (Germany) and it is under construction. Among all projects in development at FAIR in this moment, this report focuses on the $bar PANDA$ experiment (antiProton ANnihilation at DArmstadt). Some topics from the Charm and Charmonium physics program of the $bar PANDA$ experiment will be highlighted, where $bar PANDA$ is expected to provide first measurements and original contributions, such as the measurement of the width of very narrow states and the measurements of high spin particles, nowaday undetected. The technique to measure the width of these very narrow states will be presented, and a general overview of the machine is provided.
Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Anti-proton and Ion Research FAIR at Darmstadt, Germany. A copious production of Xi-hyperons at a dedicated internal target in the stored anti-proton beam is expected, which will enable the high-precision gamma-spectroscopy of double strange systems for the first time. In addition to the general purpose PANDA setup, the hypernuclear experiments require an active secondary target of silicon layers and absorber material as well as high purity germanium (HPGe) crystals as gamma-detectors. The design of the setup and the development of these detectors is progressing: a first HPGe crystal with a new electromechanical cooling system was prepared and the properties of a silicon strip detector as a prototype to be used in the secondary target were studied. Simultaneously to the hardware projects, detailed Monte Carlo simulations were performed to predict the yield of particle stable hypernuclei. With the help of the Monte Carlo a procedure for Lambda-Lambda-hypernuclei identification by the detection and correlation of the weak decay pions was developed.
A characterisation of scintillating fibres with silicon photomultiplier read-out was performed in view of their possible application in fibre tracking detector systems. Such a concept is being considered for the Kaos spectrometer at the Mainz Microtron MAMI and as a time-of-flight start detector for the hypernuclear physics programme at the PANDA experiment of the FAIR project. Results on particle detection effciency and time resolution are discussed. In summary, the silicon devices are very suitable for the detection of the low light yield from scintillating fibres insofar a trigger scheme is found to cope with the noise rate characteristics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا