Do you want to publish a course? Click here

Discovery of Three Distant, Cold Brown Dwarfs in the WFC3 Infrared Spectroscopic Parallels Survey

97   0   0.0 ( 0 )
 Added by Daniel Masters
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery of three late type (>T4) brown dwarfs, including a probable Y dwarf, in the WFC3 Infrared Spectroscopic Parallels (WISP) Survey. We use the G141 grism spectra to determine the spectral types of the dwarfs and derive distance estimates based on a comparison with nearby T dwarfs with known parallaxes. These are the most distant spectroscopically confirmed T/Y dwarfs, with the farthest at an estimated distance of ~400 pc. We compare the number of cold dwarfs found in the WISP survey with simulations of the brown dwarf mass function. The number found is generally consistent with an initial stellar mass function dN/dM propto M^{-alpha} with alpha = 0.0--0.5, although the identification of a Y dwarf is somewhat surprising and may be indicative of either a flatter absolute magnitude/spectral type relation than previously reported or an upturn in the number of very late type brown dwarfs in the observed volume.



rate research

Read More

We present near-infrared emission line counts and luminosity functions from the HST WFC3 Infrared Spectroscopic Parallels (WISP) program for 29 fields (0.037 deg^2) observed using both the G102 and G141 grisms. Altogether we identify 1048 emission line galaxies with observed equivalent widths greater than 40 Angstroms, 467 of which have multiple detected emission lines. The WISP survey is sensitive to fainter flux levels (3-5x10^-17 ergs/s/cm^2) than the future space near-infrared grism missions aimed at baryonic acoustic oscillation cosmology (1-4x10^-16 ergs/s/cm^2), allowing us to probe the fainter emission line galaxies that the shallower future surveys may miss. Cumulative number counts of 0.7<z<1.5 galaxies reach 10,000 deg^-2 above an H-alpha flux of 2x10^-16 ergs/s/cm^2. H-alpha-emitting galaxies with comparable [OIII] flux are roughly 5 times less common than galaxies with just H-alpha emission at those flux levels. Galaxies with low H-alpha/[OIII] ratios are very rare at the brighter fluxes that future near-infrared grism surveys will probe; our survey finds no galaxies with H-alpha/[OIII] < 0.95 that have H-alpha flux greater than 3x10^-16 ergs/s/cm^2. Our H-alpha luminosity function contains a comparable number density of faint line emitters to that found by the NICMOS near-infrared grism surveys, but significantly fewer (factors of 3-4 less) high luminosity emitters. We also find that our high redshift (z=0.9-1.5) counts are in agreement with the high redshift (z=1.47) narrow band H-alpha survey of HiZELS (Sobral et al. 2013), while our lower redshift luminosity function (z=0.3-0.9) falls slightly below their z=0.84 result. The evolution in both the H-alpha luminosity function from z=0.3--1.5 and the [OIII] luminosity function from z=0.7-2.3 is almost entirely in the L* parameter, which steadily increases with redshift over those ranges.
310 - N. Lodieu 2009
We present the discovery of two brown dwarfs in the UKIRT Infrared Deep Sky Survey (UKIDSS) Deep Extragalactic Survey (DXS) Data Release 2. Both objects were selected photometrically from six square degrees in DXS for their blue J-K colour and the lack of optical counterparts in the Sloan Digital Sky Survey (SDSS) Stripe 82. Additional optical photometry provided by the Canada-France-Hawaii Telescope Legacy Survey (CFHT-LS) corroborated the possible substellarity of these candidates. Subsequent methane imaging of UDXS J221611.51+003308.1 and UDXS J221903.10+002418.2, has confirmed them as T7$pm$1 and T6$pm$1 dwarfs at photometric distances of 81 (52-118 pc) and 60 (44-87 pc; 2 sigma confidence level). A similar search in the second data release of the Ultra Deep Survey over a smaller area (0.77 square degree) and shallower depth didnt return any late-T dwarf candidate. The numbers of late-T dwarfs in our study are broadly in line with a declining mass function when considering the current area and depth of the DXS and UDS. These brown dwarfs are the first discovered in the VIMOS 4 field and among the few T dwarfs found in pencil-beam surveys. They are valuable to investigate the scale height of T dwarfs.
This White Paper describes the opportunities for discovery of Jupiter-mass objects with 300K atmospheres. The discovery and characterization of such cold objects is vital for understanding the low-mass terminus of the initial mass function and for optimizing the study of exoplanets by the next generation of large telescopes, space probes and space missions.
We report the complete photometric results from our Herschel study which is the first comprehensive program to search for far-infrared emission from cold dust around young brown dwarfs. We surveyed 50 fields containing 51 known or suspected brown dwarfs and very low mass stars that have evidence of circumstellar disks based on Spitzer photometry and/or spectroscopy. The objects with known spectral types range from M3 to M9.5. Four of the candidates were subsequently identified as extragalactic objects. Of the remaining 47 we have successfully detected 36 at 70micron and 14 at 160micron with S/N greater than 3, as well as several additional possible detections with low S/N. The objects exhibit a range of [24]--[70] micron colors suggesting a range in mass and/or structure of the outer disk. We present modeling of the spectral energy distributions of the sample and discuss trends visible in the data. Using two Monte Carlo radiative transfer codes we investigate disk masses and geometry. We find a very wide range in modeled total disk masses from less than 1e-6 solar masses up to 1e-3 solar masses with a median disk mass of order 3e-5 solar masses, suggesting that the median ratio of disk mass to central object mass may be lower than for T Tauri stars. The disk scale heights and flaring angles, however, cover a range consistent with those seen around T Tauri stars. The host clouds in which the young brown dwarfs and low-mass stars are located span a range in estimated age from ~1-3 Myr to ~10 Myr and represent a variety of star-forming environments. No obvious dependence on cloud location or age is seen in the disk properties, though the statistical significance of this conclusion is not strong.
We combine 131 new medium-resolution (R~2000) J-band spectra of M, L, and T dwarfs from the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) with 97 previously published BDSS spectra to study surface-gravity-sensitive indices for 228 low-mass stars and brown dwarfs spanning spectral types M5-T9. Specifically, we use an established set of spectral indices to determine surface gravity classifications for all M6-L7 objects in our sample by measuring equivalent widths (EW) of the K I lines at 1.1692, 1.1778, 1.2529 um, and the 1.2 um FeHJ absorption index. Our results are consistent with previous surface gravity measurements, showing a distinct double peak - at ~L5 and T5 - in K I EW as a function of spectral type. We analyze K I EWs of 73 objects of known ages and find a linear trend between log(Age) and EW. From this relationship, we assign age ranges to the very low gravity, intermediate gravity, and field gravity designations for spectral types M6-L0. Interestingly, the ages probed by these designations remain broad, change with spectral type, and depend on the gravity sensitive index used. Gravity designations are useful indicators of the possibility of youth, but current datasets cannot be used to provide a precise age estimate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا