Do you want to publish a course? Click here

A Herschel Survey of Cold Dust in Disks Around Brown Dwarfs and Low-Mass Stars

151   0   0.0 ( 0 )
 Added by Paul Harvey
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the complete photometric results from our Herschel study which is the first comprehensive program to search for far-infrared emission from cold dust around young brown dwarfs. We surveyed 50 fields containing 51 known or suspected brown dwarfs and very low mass stars that have evidence of circumstellar disks based on Spitzer photometry and/or spectroscopy. The objects with known spectral types range from M3 to M9.5. Four of the candidates were subsequently identified as extragalactic objects. Of the remaining 47 we have successfully detected 36 at 70micron and 14 at 160micron with S/N greater than 3, as well as several additional possible detections with low S/N. The objects exhibit a range of [24]--[70] micron colors suggesting a range in mass and/or structure of the outer disk. We present modeling of the spectral energy distributions of the sample and discuss trends visible in the data. Using two Monte Carlo radiative transfer codes we investigate disk masses and geometry. We find a very wide range in modeled total disk masses from less than 1e-6 solar masses up to 1e-3 solar masses with a median disk mass of order 3e-5 solar masses, suggesting that the median ratio of disk mass to central object mass may be lower than for T Tauri stars. The disk scale heights and flaring angles, however, cover a range consistent with those seen around T Tauri stars. The host clouds in which the young brown dwarfs and low-mass stars are located span a range in estimated age from ~1-3 Myr to ~10 Myr and represent a variety of star-forming environments. No obvious dependence on cloud location or age is seen in the disk properties, though the statistical significance of this conclusion is not strong.



rate research

Read More

82 - E. Sanchis , L. Testi , A. Natta 2019
We present new 890 $mu m$ continuum ALMA observations of 5 brown dwarfs (BDs) with infrared excess in Lupus I and III -- which, in combination with 4 BDs previously observed, allowed us to study the mm properties of the full known BD disk population of one star-forming region. Emission is detected in 5 out of the 9 BD disks. Dust disk mass, brightness profiles and characteristic sizes of the BD population are inferred from continuum flux and modeling of the observations. Only one source is marginally resolved, allowing for the determination of its disk characteristic size. We conduct a demographic comparison between the properties of disks around BDs and stars in Lupus. Due to the small sample size, we cannot confirm or disprove if the disk mass over stellar mass ratio drops for BDs, as suggested for Ophiuchus. Nevertheless, we find that all detected BD disks have an estimated dust mass between 0.2 and 3.2 $M_{bigoplus}$; these results suggest that the measured solid masses in BD disks can not explain the observed exoplanet population, analogous to earlier findings on disks around more massive stars. Combined with the low estimated accretion rates, and assuming that the mm-continuum emission is a reliable proxy for the total disk mass, we derive ratios of $dot{M}_{mathrm{acc}} / M_{mathrm{disk}}$ significantly lower than in disks around more massive stars. If confirmed with more accurate measurements of disk gas masses, this result could imply a qualitatively different relationship between disk masses and inward gas transport in BD disks.
We present the results of ALMA band 7 observations of dust and CO gas in the disks around 7 objects with spectral types ranging between M5.5 and M7.5 in Upper Scorpius OB1, and one M3 star in Ophiuchus. We detect unresolved continuum emission in all but one source, and the $^{12}$CO J=3-2 line in two sources. We constrain the dust and gas content of these systems using a grid of models calculated with the radiative transfer code MCFOST, and find disk dust masses between 0.1 and 1 M$_oplus$, suggesting that the stellar mass / disk mass correlation can be extrapolated for brown dwarfs with masses as low as 0.05 M$_odot$. The one disk in Upper Sco in which we detect CO emission, 2MASS J15555600, is also the disk with warmest inner disk as traced by its H - [4.5] photometric color. Using our radiative transfer grid, we extend the correlation between stellar luminosity and mass-averaged disk dust temperature originally derived for stellar mass objects to the brown dwarf regime to $langle T_{dust} rangle approx 22 (L_{*} /L_{odot})^{0.16} K$, applicable to spectral types of M5 and later. This is slightly shallower than the relation for earlier spectral type objects and yields warmer low-mass disks. The two prescriptions cross at 0.27 L$_odot$, corresponding to masses between 0.1 and 0.2 M$_odot$ depending on age.
177 - Ilaria Pascucci 2013
There is growing observational evidence that disk evolution is stellar-mass dependent. Here, we show that these dependencies extend to the atomic and molecular content of disk atmospheres. We analyze a unique dataset of high-resolution Spitzer/IRS spectra from 8 very low-mass star and brown dwarf disks. We report the first detections of Ne+, H2, CO2, and tentative detections of H2O toward these faint and low-mass disks. Two of our [NeII] 12.81 micron emission lines likely trace the hot (>5,000 K) disk surface irradiated by X-ray photons from the central stellar/sub-stellar object. The H2 S(2) and S(1) fluxes are consistent with arising below the fully or partially ionized surface traced by the [NeII] emission, in gas at about 600 K. We confirm the higher C2H2/HCN flux and column density ratio in brown dwarf disks previously noted from low-resolution IRS spectra. Our high-resolution spectra also show that the HCN/H2O fluxes of brown dwarf disks are on average higher than those of T Tauri disks. Our LTE modeling hints that this difference extends to column density ratios if H2O lines trace warm > 600 K disk gas. These trends suggest that the inner regions of brown dwarf disks have a lower O/C ratio than those of T Tauri disks which may result from a more efficient formation of non-migrating icy planetesimals. A O/C=1, as inferred from our analysis, would have profound implications on the bulk composition of rocky planets that can form around very low-mass stars and brown dwarfs.
Circumstellar disks are expected to be the birthplaces of planets. The potential for forming one or more planets of various masses is essentially driven by the initial mass of the disks. We present and analyze Herschel/PACS observations of disk-bearing M-type stars that belong to the young ~2 Myr old Chamaleon-I star forming region. We used the radiative transfer code RADMC to successfully model the SED of 17 M-type stars detected at PACS wavelengths. We first discuss the relatively low detection rates of M5 and later spectral type stars with respect to the PACS sensitivity, and argue their disks masses, or flaring indices, are likely to be low. For M0 to M3 stars, we find a relatively broad range of disk masses, scale heights, and flaring indices. Via a parametrization of dust stratification, we can reproduce the peak fluxes of the 10 $mu$m emission feature observed with Spitzer/IRS, and find that disks around M-type stars may display signs of dust sedimentation. The Herschel/PACS observations of low-mass stars in Cha-I provide new constraints on their disk properties, overall suggesting that disk parameters for early M-type stars are comparable to those for more massive stars (e.g., comparable scale height and flaring angles). However, regions of the disks emitting at about 100 $mu$m may still be in the optically thick regime, preventing direct determination of disk masses. Thus the modeled disk masses should be considered as lower limits. Still, we are able to extend the wavelength coverage of SED models and start characterizing effects such as dust sedimentation, an effort leading the way towards ALMA observations of these low-mass stars.
Using the Infrared Array Camera and the Multiband Imaging Photometer aboard the {it Spitzer Space Telescope}, we have obtained images of the Lupus 3 star-forming cloud at 3.6, 4.5, 5.8, 8.0, and 24 micron. We present photometry in these bands for the 41 previously known members that are within our images. In addition, we have identified 19 possible new members of the cloud based on red 3.6-8.0 micron colors that are indicative of circumstellar disks. We have performed optical spectroscopy on 6 of these candidates, all of which are confirmed as young low-mass members of Lupus 3. The spectral types of these new members range from M4.75 to M8, corresponding to masses of 0.2-0.03 $M_odot$ for ages of $sim1$ Myr according to theoretical evolutionary models. We also present optical spectroscopy of a candidate disk-bearing object in the vicinity of the Lupus 1 cloud, 2M 1541-3345, which Jayawardhana & Ivanov recently classified as a young brown dwarf ($Msim0.03$ $M_odot$) with a spectral type of M8. In contrast to their results, we measure an earlier spectral type of M5.75$pm$0.25 for this object, indicating that it is probably a low-mass star ($Msim0.1$ $M_odot$). In fact, according to its gravity-sensitive absorption lines and its luminosity, 2M 1541-3345 is older than members of the Lupus clouds ($tausim1$ Myr) and instead is probably a more evolved pre-main-sequence star that is not directly related to the current generation of star formation in Lupus.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا