Do you want to publish a course? Click here

Discovery of Cold Brown Dwarfs or Free-Floating Giant Planets Close to the Sun

125   0   0.0 ( 0 )
 Added by Sandy Leggett
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

This White Paper describes the opportunities for discovery of Jupiter-mass objects with 300K atmospheres. The discovery and characterization of such cold objects is vital for understanding the low-mass terminus of the initial mass function and for optimizing the study of exoplanets by the next generation of large telescopes, space probes and space missions.



rate research

Read More

140 - Sascha P. Quanz 2009
The number of low-mass brown dwarfs and even free floating planetary mass objects in young nearby star-forming regions and associations is continuously increasing, offering the possibility to study the low-mass end of the IMF in greater detail. In this paper, we present six new candidates for (very) low-mass objects in the Taurus star-forming region one of which was recently discovered in parallel by Luhman et al. (2009). The underlying data we use is part of a new database from a deep near-infrared survey at the Calar Alto observatory. The survey is more than four magnitudes deeper than the 2MASS survey and covers currently ~1.5 square degree. Complementary optical photometry from SDSS were available for roughly 1.0 square degree. After selection of the candidates using different color indices, additional photometry from Spitzer/IRAC was included in the analysis. In greater detail we focus on two very faint objects for which we obtained J-band spectra. Based on comparison with reference spectra we derive a spectral type of L2+/-0.5 for one object, making it the object with the latest spectral type in Taurus known today. From models we find the effective temperature to be 2080+/-140 K and the mass 5-15 Jupiter masses. For the second source the J-band spectrum does not provide a definite proof of the young, low-mass nature of the object as the expected steep water vapor absorption at 1.33 micron is not present in the data. We discuss the probability that this object might be a background giant or carbon star. If it were a young Taurus member, however, a comparison to theoretical models suggests that it lies close to or even below the deuterium burning limit (<13 Jupiter masses) as well. A first proper motion analysis for both objects shows that they are good candidates for being Taurus members.
We report on the discovery of an optical jet with a striking morphology in the Rosette Nebula. It could be the most extreme case known of an accretion disk and jet system directly exposed to strong ionization fields that impose strong effects on its disk evolution. Unlike typical optical flows, this jet system is found to have a high excitation nature mainly due to disruptive interaction with the violent environment. As a result, the extension of the highly-collimated jet and possible former episodes of the degenerated counterjet all show bow-shocked structures. Our results provide implications on how incipience of massive stars in giant molecular clouds prevents further generations of low-mass star formation, and offers an evolutionary solution on how isolated substellar/planetary mass objects in regions of massive star formation are formed.
The rotational spectral modulation (spectro-photometric variability) of brown dwarfs is usually interpreted as a sign of the presence of inhomogeneous cloud covers in the atmosphere. This paper aims at exploring the role of temperature fluctuations in these spectral modulations. These fluctuations could naturally arise in a convective atmosphere impacted by diabatic processes such as complex chemistry, i.e. the recently proposed mechanism to explain the L/T transition: CO/CH4 radiative convection. We use the 1D radiative/convective code ATMO with ad-hoc modifications of the temperature gradient to model the rotational spectral modulation of 2MASS 1821, 2MASS 0136, and PSO 318.5-22. Modeling the spectral bright-to-faint ratio of the modulation of 2MASS 1821, 2MASS 0136, and PSO 318.5-22 shows that most spectral characteristics can be reproduced by temperature variations alone. Furthermore, the approximately anti-correlated variability between different wavelengths can be easily interpreted as a change in the temperature gradient in the atmosphere which is the consequence we expect from CO/CH4 radiative convection to explain the L/T transition. The deviation from an exact anti-correlation could then be interpreted as a phase shift similar to the hot-spot shift a different bandpasses in the atmosphere of hot Jupiters. Our results suggest that the rotational spectral modulation from cloud-opacity and temperature variations are degenerate. The detection of direct cloud spectral signatures, e.g. the silicate absorption feature at 10 um, would help to confirm the presence of clouds and their contribution to spectral modulations. Future studies looking at the differences in the spectral modulation of objects with and without the silicate absorption feature may give us some insight on how to distinguish cloud-opacity fluctuations from temperature fluctuations.
Planets in close-in orbits interact magnetically and tidally with their host stars. These interactions lead to a net torque that makes close-in planets migrate inward or outward depending on their orbital distance. We compare systematically the strength of magnetic and tidal torques for typical observed star-planet systems (T-Tauri & hot Jupiter, M dwarf & Earth-like planet, K star & hot Jupiter) based on state-of-the-art scaling-laws. We find that depending on the characteristics of the system, tidal or magnetic effects can dominate. For very close-in planets, we find that both torques can make a planet migrate on a timescale as small as 10 to 100 thousands of years. Both effects thus have to be taken into account when predicting the evolution of compact systems.
Beyond the main sequence solar type stars undergo extensive mass loss, providing an environment where planet and brown dwarf companions interact with the surrounding material. To examine the interaction of substellar mass objects embedded in the stellar wind of an asymptotic giant branch (AGB) star, three dimensional hydrodynamical simulations at high resolution have been calculated utilizing the FLASH adaptive mesh refinement code. Attention is focused on the perturbation of the substellar mass objects on the morphology of the outflowing circumstellar matter. In particular, we determine the properties of the resulting spiral density wake as a function of the mass, orbital distance, and velocity of the object as well as the wind velocity and its sound velocity. Our results suggest that future observations of the spiral pattern may place important constraints on the properties of the unseen low mass companion in the outflowing stellar wind.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا