Do you want to publish a course? Click here

Bohmian trajectories for bipartite entangled states

154   0   0.0 ( 0 )
 Added by Wesley B. Cardoso
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive Bohms trajectories from Bells beables for arbitrary bipartite systems composed by dissipative noninteracting harmonic oscillators at finite temperature. As an application of our result, we calculate the Bohmian trajectories of particles described by a generalized Werner state, comparing the trajectories when the sate is either separable or entangled. We show that qualitative differences appear in the trajectories for entangled states as compared with those for separable states.



rate research

Read More

Bohmian mechanics is an interpretation of quantum mechanics that describes the motion of quantum particles with an ensemble of deterministic trajectories. Several attempts have been made to utilize Bohmian trajectories as a computational tool to simulate quantum systems consisting of many particles, a very demanding computational task. In this paper, we present a novel ab-initio approach to solve the many-body problem for bosonic systems by evolving a system of one-particle wavefunctions representing pilot waves that guide the Bohmian trajectories of the quantum particles. In this approach, quantum entanglement effects arise due to the interactions between different configurations of Bohmian particles evolving simultaneously. The method is used to study the breathing dynamics and ground state properties in a system of interacting bosons.
138 - Lin Chen , Yi-Xin Chen 2008
We prove that the bipartite entangled state of rank three is distillable. So there is no rank three bipartite bound entangled state. By using this fact, We present some families of rank four states that are distillable. We also analyze the relation between the low rank state and the Werner state.
Self-testing refers to a method with which a classical user can certify the state and measurements of quantum systems in a device-independent way. Especially, the self-testing of entangled states is of great importance in quantum information process. A comprehensible example is that violating the CHSH inequality maximally necessarily implies the bipartite shares a singlet. One essential question in self-testing is that, when one observes a non-maximum violation, how close is the tested state to the target state (which maximally violates certain Bell inequality)? The answer to this question describes the robustness of the used self-testing criterion, which is highly important in a practical sense. Recently, J. Kaniewski predicts two analytic self-testing bounds for bipartite and tripartite systems. In this work, we experimentally investigate these two bounds with high quality two-qubit and three-qubit entanglement sources. The results show that these bounds are valid for various of entangled states we prepared, and thus, we implement robust self-testing processes which improve the previous results significantly.
Vortices are known to play a key role in the dynamics of the quantum trajectories defined within the framework of the de Broglie-Bohm formalism of quantum mechanics. It has been rigourously proved that the motion of a vortex in the associated velocity field can induce chaos in these trajectories, and numerical studies have explored the rich variety of behaviors that due to their influence can be observed. In this paper, we go one step further and show how the theory of dynamical systems can be used to construct a general and systematic classification of such dynamical behaviors. This should contribute to establish some firm grounds on which the studies on the intrinsic stochasticity of Bohms quantum trajectories can be based. An application to the two dimensional isotropic harmonic oscillator is presented as an illustration.
The positivity of the partial transpose is in general only a necessary condition for separability. There exist quantum states that are not separable, but nevertheless are positive under partial transpose. States of this type are known as bound entangled states meaning that these states are entangled but they do not allow distillation of pure entanglement by means of local operations and classical communication (LOCC). We present a parametrization of a class of $2times 2$ bound entangled Gaussian states for bipartite continuous-variable quantum systems with two modes on each side. We propose an experimental protocol for preparing a particular bound entangled state in quantum optics. We then discuss the robustness properties of this protocol with respect to the occupation number of thermal inputs and the degrees of squeezing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا