Do you want to publish a course? Click here

Entangled Quantum Dynamics of Many-Body Systems using Bohmian Trajectories

191   0   0.0 ( 0 )
 Added by Tarek A. Elsayed Dr
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bohmian mechanics is an interpretation of quantum mechanics that describes the motion of quantum particles with an ensemble of deterministic trajectories. Several attempts have been made to utilize Bohmian trajectories as a computational tool to simulate quantum systems consisting of many particles, a very demanding computational task. In this paper, we present a novel ab-initio approach to solve the many-body problem for bosonic systems by evolving a system of one-particle wavefunctions representing pilot waves that guide the Bohmian trajectories of the quantum particles. In this approach, quantum entanglement effects arise due to the interactions between different configurations of Bohmian particles evolving simultaneously. The method is used to study the breathing dynamics and ground state properties in a system of interacting bosons.



rate research

Read More

310 - J. Eisert , M. Friesdorf , 2014
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instances of quantum simulations. This article provides an overview on the progress in understanding dynamical equilibration and thermalisation of closed quantum many-body systems out of equilibrium due to quenches, ramps and periodic driving. It also addresses topics such as the eigenstate thermalisation hypothesis, typicality, transport, many-body localisation, universality near phase transitions, and prospects for quantum simulations.
We derive Bohms trajectories from Bells beables for arbitrary bipartite systems composed by dissipative noninteracting harmonic oscillators at finite temperature. As an application of our result, we calculate the Bohmian trajectories of particles described by a generalized Werner state, comparing the trajectories when the sate is either separable or entangled. We show that qualitative differences appear in the trajectories for entangled states as compared with those for separable states.
We study the propagation of strongly interacting Rydberg polaritons through an atomic medium in a one-dimensional optical lattice. We derive an effective single-band Hubbard model to describe the dynamics of the dark state polaritons under realistic assumptions. Within this model, we analyze the driven-dissipative transport of polaritons through the system by considering a coherent drive on one side and by including the spontaneous emission of the metastable Rydberg state. Using a variational approch to solve the many-body problem, we find strong antibunching of the outgoing photons despite the losses from the Rydberg state decay.
The assumption that quantum systems relax to a stationary state in the long-time limit underpins statistical physics and much of our intuitive understanding of scientific phenomena. For isolated systems this follows from the eigenstate thermalization hypothesis. When an environment is present the expectation is that all of phase space is explored, eventually leading to stationarity. Notable exceptions are decoherence-free subspaces that have important implications for quantum technologies and have so far only been studied for systems with a few degrees of freedom. Here we identify simple and generic conditions for dissipation to prevent a quantum many-body system from ever reaching a stationary state. We go beyond dissipative quantum state engineering approaches towards controllable long-time non-stationarity typically associated with macroscopic complex systems. This coherent and oscillatory evolution constitutes a dissipative version of a quantum time-crystal. We discuss the possibility of engineering such complex dynamics with fermionic ultracold atoms in optical lattices.
Certain wave functions of non-interacting quantum chaotic systems can exhibit scars in the fabric of their real-space density profile. Quantum scarred wave functions concentrate in the vicinity of unstable periodic classical trajectories. We introduce the notion of many-body quantum scars which reflect the existence of a subset of special many-body eigenstates concentrated in certain parts of the Hilbert space. We demonstrate the existence of scars in the Fibonacci chain -- the one- dimensional model with a constrained local Hilbert space realized in the 51 Rydberg atom quantum simulator [H. Bernien et al., arXiv:1707.04344]. The quantum scarred eigenstates are embedded throughout the thermalizing many-body spectrum, but surprisingly lead to direct experimental signatures such as robust oscillations following a quench from a charge-density wave state found in experiment. We develop a model based on a single particle hopping on the Hilbert space graph, which quantitatively captures the scarred wave functions up to large systems of L = 32 atoms. Our results suggest that scarred many-body bands give rise to a new universality class of quantum dynamics, which opens up opportunities for creating and manipulating novel states with long-lived coherence in systems that are now amenable to experimental study.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا