Do you want to publish a course? Click here

Preparation of bipartite bound entangled Gaussian states in quantum optics

89   0   0.0 ( 0 )
 Added by Shan Ma
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The positivity of the partial transpose is in general only a necessary condition for separability. There exist quantum states that are not separable, but nevertheless are positive under partial transpose. States of this type are known as bound entangled states meaning that these states are entangled but they do not allow distillation of pure entanglement by means of local operations and classical communication (LOCC). We present a parametrization of a class of $2times 2$ bound entangled Gaussian states for bipartite continuous-variable quantum systems with two modes on each side. We propose an experimental protocol for preparing a particular bound entangled state in quantum optics. We then discuss the robustness properties of this protocol with respect to the occupation number of thermal inputs and the degrees of squeezing.



rate research

Read More

137 - D. Buono , G. Nocerino , V. DAuria 2010
Gaussian bipartite states are basic tools for the realization of quantum information protocols with continuous variables. Their complete characterization is obtained by the reconstruction of the corresponding covariance matrix. Here we describe in details and experimentally demonstrate a robust and reliable method to fully characterize bipartite optical Gaussian states by means of a single homodyne detector. We have successfully applied our method to the bipartite states generated by a sub-threshold type-II optical parametric oscillator which produces a pair of thermal cross-polarized entangled CW frequency degenerate beams. The method provide a reliable reconstruction of the covariance matrix and allows to retrieve all the physical information about the state under investigation. These includes observable quantities, as energy and squeezing, as well as non observable ones as purity, entropy and entanglement. Our procedure also includes advanced tests for Gaussianity of the state and, overall, represents a powerful tool to study bipartite Gaussian state from the generation stage to the detection one.
Complementarity between one- and two-particle visibility in discrete systems can be extended to bipartite quantum-entangled Gaussian states. The meaning of the two-particle visibility originally defined by Jaeger, Horne, Shimony, and Vaidman with the use of an indirect method that first corrects the two-particle probability distribution by adding and subtracting other distributions with varying degree of entanglement, however, deserves further analysis. Furthermore, the origin of complementarity between one-particle visibility and two-particle visibility is somewhat elusive and it is not entirely clear what is the best way to associate particular two-particle quantum observables with the two-particle visibility. Here, we develop a direct method for quantifying the two-particle visibility based on measurement of a pair of two-particle observables that are compatible with the measured pair of single-particle observables. For each of the two-particle observables the corresponding visibility is computed, after which the absolute difference of the latter pair of visibilities is considered as a redefinition of the two-particle visibility. Our approach reveals a mathematical symmetry as it treats the two pairs of one-particle or two-particle observables on equal footing by formally identifying all four observable distributions as rotated marginal distributions of the original two-particle probability distribution. The complementarity relation between one-particle visibility and two-particle visibility obtained with the direct method is exact in the limit of infinite Gaussian precision where the entangled Gaussian state approaches an ideal EPR state. The presented results demonstrate the theoretical utility of rotated marginal distributions for elucidating the nature of two-particle visibility and provide tools for the development of quantum applications employing continuous variables.
117 - V. DAuria , S. Fornaro , A. Porzio 2009
We present the full experimental reconstruction of Gaussian entangled states generated by a type--II optical parametric oscillator (OPO) below threshold. Our scheme provides the entire covariance matrix using a single homodyne detector and allows for the complete characterization of bipartite Gaussian states, including the evaluation of purity, entanglement and nonclassical photon correlations, without a priori assumptions on the state under investigation. Our results show that single homodyne schemes are convenient and robust setups for the full characterization of OPO signals and represent a tool for quantum technology based on continuous variable entanglement.
We derive Bohms trajectories from Bells beables for arbitrary bipartite systems composed by dissipative noninteracting harmonic oscillators at finite temperature. As an application of our result, we calculate the Bohmian trajectories of particles described by a generalized Werner state, comparing the trajectories when the sate is either separable or entangled. We show that qualitative differences appear in the trajectories for entangled states as compared with those for separable states.
In continuous-variable quantum information, non-Gaussian entangled states that are obtained from Gaussian entangled states via photon subtraction are known to contain more entanglement. This makes them better resources for quantum information processing protocols, such as, quantum teleportation. We discuss the teleportation of non-Gaussian, non-classical Schrodinger-cat states of light using two-mode squeezed vacuum light that is made non-Gaussian via subtraction of a photon from each of the two modes. We consider the experimentally realizable cat states produced by subtracting a photon from the single-mode squeezed vacuum state. We discuss two figures of merit for the teleportation process, a) the fidelity, and b) the maximum negativity of the Wigner function at the output. We elucidate how the non-Gaussian entangled resource lowers the requirements on the amount of squeezing necessary to achieve any given fidelity of teleportation, or to achieve negative values of the Wigner function at the output.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا