Do you want to publish a course? Click here

Suppression of Conductance in a Topological Insulator Nanostep Junction

112   0   0.0 ( 0 )
 Added by M Alos-Palop
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate quantum transport via surface states in a nanostep junction on the surface of a 3D topological insulator that involves two different side surfaces. We calculate the conductance across the junction within the scattering matrix formalism and find that as the bias voltage is increased, the conductance of the nanostep junction is suppressed by a universal factor of 1/3 compared to the conductance of a similar planar junction based on a single surface of a topological insulator. We also calculate and analyze the Fano factor of the nanostep junction and predict that the Fano factor saturates at 1/5, five times smaller than for a Poisson process.



rate research

Read More

We experimentally investigate Andreev transport through a single junction between an s-wave indium superconductor and a thick film of a three-dimensional $Bi_2Te_3$ topological insulator. We study $Bi_2Te_3$ samples with different bulk and surface characteristics, where the presence of a topological surface state is confirmed by direct ARPES measurements. All the junctions demonstrate Andreev transport within the superconducting gap. For junctions with transparent $In-Bi_2Te_3$ interfaces we find a number of nearly periodic conductance oscillations, which are accompanied by zero-bias conductance anomaly. Both effects disappear above the superconducting transition or for resistive junctions. We propose a consistent interpretation of both effects as originating from proximity-induced superconducting correlations within the $Bi_2Te_3$ topological surface state.
The low energy physics of both graphene and surface states of three-dimensional topological insulators is described by gapless Dirac fermions with linear dispersion. In this work, we predict the emergence of a heavy Dirac fermion in a graphene/topological insulator hetero-junction, where the linear term almost vanishes and the corresponding energy dispersion becomes highly non-linear. By combining {it ab initio} calculations and an effective low-energy model, we show explicitly how strong hybridization between Dirac fermions in graphene and the surface states of topological insulators can reduce the Fermi velocity of Dirac fermions. Due to the negligible linear term, interaction effects will be greatly enhanced and can drive heavy Dirac fermion states into the half quantum Hall state with non-zero Hall conductance.
An interface electron state at the junction between a three-dimensional topological insulator (TI) film of Bi2Se3 and a ferrimagnetic insulator film of Y3Fe5O12 (YIG) was investigated by measurements of angle-resolved photoelectron spectroscopy and X-ray absorption magnetic circular dichroism (XMCD). The surface state of the Bi2Se3 film was directly observed and localized 3d spin states of the Fe3+ state in the YIG film were confirmed. The proximity effect is likely described in terms of the exchange interaction between the localized Fe 3d electrons in the YIG film and delocalized electrons of the surface and bulk states in the Bi2Se3 film. The Curie temperature (TC) may be increased by reducing the amount of the interface Fe2+ ions with opposite spin direction observable as a pre-edge in the XMCD spectra.
We study theoretically the electrical current and low-frequency noise for a linear Josephson junction structure on a topological insulator, in which the superconductor forms a closed ring and currents are injected from normal regions inside and outside the ring. We find that this geometry offers a signature for the presence of gapless 1D Majorana fermion modes that are predicted in the channel when the phase difference phi, controlled by the magnetic flux through the ring, is pi. We show that for low temperature the linear conductance jumps when phi passes through pi, accompanied by non-local correlations between the currents from the inside and outside of the ring. We compute the dependence of these features on temperature, voltage and linear dimensions, and discuss the implications for experiments.
Asymmetric electrical conductance is theoretically demonstrated on the surface of a topological insulator (TI) in the limit of infinitesimally small forward and reverse biases between two spin selective electrodes. The discontinuous behavior relies on the spin-momentum interlocked nature of TI surface electrons together with the resulting imbalance in the coupling coefficients between the electrodes and TI surface states. The analysis is based on a transmission matrix model that, in combination with a phenomenological treatment for the diffusive limit, accounts for both ballistic and scattered paths simultaneously. With the estimated conductance asymmetry over a factor of 10, implementation in the ratchet-like applications and low-voltage rectification circuits appears practicable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا