Do you want to publish a course? Click here

Interface electronic structure at the topological insulator - ferrimagnetic insulator junction

103   0   0.0 ( 0 )
 Added by Yuya Kubota
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

An interface electron state at the junction between a three-dimensional topological insulator (TI) film of Bi2Se3 and a ferrimagnetic insulator film of Y3Fe5O12 (YIG) was investigated by measurements of angle-resolved photoelectron spectroscopy and X-ray absorption magnetic circular dichroism (XMCD). The surface state of the Bi2Se3 film was directly observed and localized 3d spin states of the Fe3+ state in the YIG film were confirmed. The proximity effect is likely described in terms of the exchange interaction between the localized Fe 3d electrons in the YIG film and delocalized electrons of the surface and bulk states in the Bi2Se3 film. The Curie temperature (TC) may be increased by reducing the amount of the interface Fe2+ ions with opposite spin direction observable as a pre-edge in the XMCD spectra.



rate research

Read More

Topological insulators (TIs) hold great promises for new spin-related phenomena and applications thanks to the spin texture of their surface states. However, a versatile platform allowing for the exploitation of these assets is still lacking due to the difficult integration of these materials with the mainstream Si-based technology. Here, we exploit germanium as a substrate for the growth of Bi$_2$Se$_3$, a prototypical TI. We probe the spin properties of the Bi$_2$Se$_3$/Ge pristine interface by investigating the spin-to-charge conversion taking place in the interface states by means of a non-local detection method. The spin population is generated by optical orientation in Ge, and diffuses towards the Bi$_2$Se$_3$ which acts as a spin detector. We compare the spin-to-charge conversion in Bi$_2$Se$_3$/Ge with the one taking place in Pt in the same experimental conditions. Notably, the sign of the spin-to-charge conversion given by the TI detector is reversed compared to the Pt one, while the efficiency is comparable. By exploiting first-principles calculations, we ascribe the sign reversal to the hybridization of the topological surface states of Bi$_2$Se$_3$ with the Ge bands. These results pave the way for the implementation of highly efficient spin detection in TI-based architectures compatible with semiconductor-based platforms.
3D topological insulators, similar to the Dirac material graphene, host linearly dispersing states with unique properties and a strong potential for applications. A key, missing element in realizing some of the more exotic states in topological insulators is the ability to manipulate local electronic properties. Analogy with graphene suggests a possible avenue via a topographic route by the formation of superlattice structures such as a moire patterns or ripples, which can induce controlled potential variations. However, while the charge and lattice degrees of freedom are intimately coupled in graphene, it is not clear a priori how a physical buckling or ripples might influence the electronic structure of topological insulators. Here we use Fourier transform scanning tunneling spectroscopy to determine the effects of a one-dimensional periodic buckling on the electronic properties of Bi2Te3. By tracking the spatial variations of the scattering vector of the interference patterns as well as features associated with bulk density of states, we show that the buckling creates a periodic potential modulation, which in turn modulates the surface and the bulk states. The strong correlation between the topographic ripples and electronic structure indicates that while doping alone is insufficient to create predetermined potential landscapes, creating ripples provides a path to controlling the potential seen by the Dirac electrons on a local scale. Such rippled features may be engineered by strain in thin films and may find use in future applications of topological insulators.
We compute the spin-active scattering matrix and the local spectrum at the interface between a metal and a three-dimensional topological band insulator. We show that there exists a critical incident angle at which complete (100%) spin flip reflection occurs and the spin rotation angle jumps by $pi$. We discuss the origin of this phenomena, and systematically study the dependence of spin-flip and spin-conserving scattering amplitudes on the interface transparency and metal Fermi surface parameters. The interface spectrum contains a well-defined Dirac cone in the tunneling limit, and smoothly evolves into a continuum of metal induced gap states for good contacts. We also investigate the complex band structure of Bi$_2$Se$_3$.
Exploration of novel electromagnetic phenomena is a subject of great interest in topological quantum materials. One of the unprecedented effects to be experimentally verified is topological magnetoelectric (TME) effect originating from an unusual coupling of electric and magnetic fields in materials. A magnetic heterostructure of topological insulator (TI) hosts such an exotic magnetoelectric coupling and can be expected to realize the TME effect as an axion insulator. Here we designed a magnetic TI with tricolor structure where a non-magnetic layer of (Bi, Sb)2Te3 is sandwiched by a soft ferromagnetic Cr-doped (Bi, Sb)2Te3 and a hard ferromagnetic V-doped (Bi, Sb)2Te3. Accompanied by the quantum anomalous Hall (QAH) effect, we observe zero Hall conductivity plateaus, which are a hallmark of the axion insulator state, in a wide range of magnetic field between the coercive fields of Cr- and V-doped layers. The resistance of the axion insulator state reaches as high as 10^9 ohm, leading to a gigantic magnetoresistance ratio exceeding 10,000,000% upon the transition from the QAH state. The tricolor structure of TI may not only be an ideal arena for the topologically distinct phenomena, but also provide magnetoresistive applications for advancing dissipationless topological electronics.
Magnetic exchange driven proximity effect at a magnetic insulator / topological insulator (MI/TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. Here we report a dramatic enhancement of proximity exchange coupling in the MI / magnetic-TI EuS / Sb$_{2-x}$V$_x$Te$_3$ hybrid heterostructure, where V doping is used to drive the TI (Sb$_{2}$Te$_3$) magnetic. We observe an artificial antiferromagnetic-like structure near the MI/TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping provides insights into controllable engineering of magnetic order using a hybrid heterostructure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا