Do you want to publish a course? Click here

Conductance oscillations and zero-bias anomaly in a single superconducting junction to a three-dimensional $Bi_2Te_3$ topological insulator

70   0   0.0 ( 0 )
 Added by Eduard V. Deviatov
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally investigate Andreev transport through a single junction between an s-wave indium superconductor and a thick film of a three-dimensional $Bi_2Te_3$ topological insulator. We study $Bi_2Te_3$ samples with different bulk and surface characteristics, where the presence of a topological surface state is confirmed by direct ARPES measurements. All the junctions demonstrate Andreev transport within the superconducting gap. For junctions with transparent $In-Bi_2Te_3$ interfaces we find a number of nearly periodic conductance oscillations, which are accompanied by zero-bias conductance anomaly. Both effects disappear above the superconducting transition or for resistive junctions. We propose a consistent interpretation of both effects as originating from proximity-induced superconducting correlations within the $Bi_2Te_3$ topological surface state.



rate research

Read More

We investigate quantum transport via surface states in a nanostep junction on the surface of a 3D topological insulator that involves two different side surfaces. We calculate the conductance across the junction within the scattering matrix formalism and find that as the bias voltage is increased, the conductance of the nanostep junction is suppressed by a universal factor of 1/3 compared to the conductance of a similar planar junction based on a single surface of a topological insulator. We also calculate and analyze the Fano factor of the nanostep junction and predict that the Fano factor saturates at 1/5, five times smaller than for a Poisson process.
We compare tunneling density of states (TDOS) into two ultrathin Ag films, one uniform and one granular, for different degrees of disorder. The uniform film shows a crossover from Altshuler-Aronov (AA) zero bias anomaly to Efros Shklovskii (ES) like Coulomb gap as the disorder is increased. The granular film, on the other hand, exhibits AA behavior even deeply in the insulating regime. We analyze the data and find that granularity introduces a new regime for the TDOS. While the conductivity is dominated by hopping between clusters of grains and is thus insulating, the TDOS probes the properties of an individual cluster which is metallic.
Low energy excitation of surface states of a three-dimensional topological insulator (3DTI) can be described by Dirac fermions. By using a tight-binding model, the transport properties of the surface states in a uniform magnetic field is investigated. It is found that chiral surface states parallel to the magnetic field are responsible to the quantized Hall (QH) conductance $(2n+1)frac{e^2}{h}$ multiplied by the number of Dirac cones. Due to the two-dimension (2D) nature of the surface states, the robustness of the QH conductance against impurity scattering is determined by the oddness and evenness of the Dirac cone number. An experimental setup for transport measurement is proposed.
We use the bulk Hamiltonian for a three-dimensional topological insulator such as $rm Bi_2 Se_3$ to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states.
We present data of transport measurements through a metallic nanobridge exhibiting diffusive electron transport. A logarithmic temperature dependence and a zero-bias anomaly in the differential conductance are observed, independent of magnetic field. The data can be described by a single scaling law. The theory of electron-electron interaction in disordered systems, adapted to the case of finite-size systems in non-equilibrium, yields quantitative agreement with experiment. Measurements of universal conductance functuations support the assumptions of the theory about the electronic phase coherence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا