No Arabic abstract
We show that the ghost degrees of freedom of Einstein gravity with a Weyl term can be eliminated by a simple mechanism that invokes local Lorentz symmetry breaking. We demonstrate how the mechanism works in a cosmological setting. The presence of the Weyl term forces a redefinition of the quantum vacuum state of the tensor perturbations. As a consequence the amplitude of their spectrum blows up when the Lorentz-violating scale becomes comparable to the Hubble radius. Such a behaviour is in sharp contrast to what happens in standard Weyl gravity where the gravitational ghosts smoothly damp out the spectrum of primordial gravitational waves.
In the present paper, we study the inflationary phenomenology of a $k$-inflation corrected Einstein-Gauss-Bonnet theory. Non-canonical kinetic terms are known for producing Jean instabilities or superluminal sound wave velocities in the aforementioned era, but we demonstrate in this work that by adding Gauss-Bonnet string corrections and assuming that the non-canonical kinetic term $omega X^gamma$ is in quadratic, one can obtain a ghost free description. Demanding compatibility with the recent GW170817 event forces one to accept that the relation $ddotxi=Hdotxi$ for the scalar coupling function $xi (phi)$. As a result, the scalar functions of the theory are revealed to be interconnected and by assuming a specific form for one of them, specifies immediately the other. Here, we shall assume that the scalar potential is directly derivable from the equations of motion, once the Gauss-Bonnet coupling is appropriately chosen, but obviously the opposite is feasible as well. As a result, each term entering the equations of motion, can be written in terms of the scalar field and a relatively tractable phenomenology is produced. For quadratic kinetic terms, the resulting scalar potential is quite elegant functionally. Different exponents, which lead to either a more perplexed solution for the scalar potential, are still a possibility which was not further studied. We also discuss in brief the non-Gaussianities issue under the slow-roll and constant-roll conditions holding true, and we demonstrate that the predicted amount of non-Gaussianities is significantly enhanced in comparison to the $k$-inflation free Einstein-Gauss-Bonnet theory.
The role of Lorentz symmetry in ghost-free massive gravity is studied, emphasizing features emerging in approximately Minkowski spacetime. The static extrema and saddle points of the potential are determined and their Lorentz properties identified. Solutions preserving Lorentz invariance and ones breaking four of the six Lorentz generators are constructed. Locally, globally, and absolutely stable Lorentz-invariant extrema are found to exist for certain parameter ranges of the potential. Gravitational waves in the linearized theory are investigated. Deviations of the fiducial metric from the Minkowski metric are shown to lead to pentarefringence of the five wave polarizations, which can include superluminal modes and subluminal modes with negative energies in certain observer frames. The Newton limit of ghost-free massive gravity is explored. The propagator is constructed and used to obtain the gravitational potential energy between two point masses. The result extends the Fierz-Pauli limit to include corrections generically breaking both rotation and boost invariance.
We discuss, without assuming asymptotic flatness, a gravitational lens for an observer and source that are within a finite distance from a lens object. The proposed lens equation is consistent with the deflection angle of light that is defined for nonasymptotic observer and source by Takizawa et al. [Phys. Rev. D 101, 104032 (2020)] based on the Gauss-Bonnet theorem with using the optical metric. This lens equation, though it is shown to be equivalent to the Bozza lens equation[Phys. Rev. D 78, 103005 (2008)], is linear in the deflection angle. Therefore, the proposed equation is more convenient for the purpose of doing an iterative analysis. As an explicit example of an asymptotically nonflat spacetime, we consider a static and spherically symmetric solution in Weyl conformal gravity, especially a case that $gamma$ parameter in the Weyl gravity model is of the order of the inverse of the present Hubble radius. For this case, we examine iterative solutions for the finite-distance lens equation up to the third order. The effect of the Weyl gravity on the lensed image position begins at the third order and it is linear in the impact parameter of light. The deviation of the lensed image position from the general relativistic one is $sim 10^{-2}$ microarcsecond for the lens and source with a separation angle of $sim 1$ arcminute, where we consider a cluster of galaxies with $10^{14} M_{odot}$ at $sim 1$ Gpc for instance. The deviation becomes $sim 10^{-1}$ microarcseconds, even if the separation angle is $sim 10$ arcminutes. Therefore, effects of the Weyl gravity model are negligible in current and near-future observations of gravitational lensing. On the other hand, the general relativistic corrections at the third order $sim 0.1$ milliarcseconds can be relevant with VLBI observations.
We calculate the one-loop corrections from inflationary gravitons to the electromagnetic fields of a point charge and a point magnetic dipole on a locally de Sitter space background. Results are obtained both for an observer at rest in co-moving coordinates, whose physical distance from the sources increases with the expanding universe, and for an observer at rest in static coordinates, whose physical distance from the sources is constant. The fields of both sources show the de Sitter analogs of the fractional $G/r^2$ corrections which occur in flat space, but there are also some fractional $G H^2$ corrections due to the scattering of virtual photons from the vast ensemble of infrared gravitons produced by inflation. The co-moving observer perceives the magnitude of the point charge to increase linearly with co-moving time and logarithmically with the co-moving position, however, the magnetic dipole shows only a negative logarithmic spatial variation. The static observer perceives no secular change of the point charge but he does report a secular enhancement of the magnetic dipole moment.
Gravity is attributed to the spacetime curvature in classical General Relativity (GR). But, other equivalent formulation or representations of GR, such as torsion or non-metricity have altered the perception. We consider the Weyl-type $f(Q, T)$ gravity, where $Q$ represents the non-metricity and $T$ is the trace of energy momentum temsor, in which the vector field $omega_{mu}$ determines the non-metricity $Q_{mu u alpha}$ of the spacetime. In this work, we employ the well-motivated $f(Q, T)= alpha Q+ frac{beta}{6k^{2}} T$, where $alpha$ and $beta$ are the model parameters. Furthermore, we assume that the universe is dominated by the pressure-free matter, i.e. the case of dust ($p=0$). We obtain the solution of field equations similar to a power-law in Hubble parameter $H(z)$. We investigate the cosmological implications of the model by constraining the model parameter $alpha$ and $beta$ using the recent 57 points Hubble data and 1048 points Pantheon supernovae data. To study various dark energy models, we use statefinder analysis to address the current cosmic acceleration. We also observe the $Om$ diagnostic describing various phases of the universe. Finally, it is seen that the solution which mimics the power-law fits well with the Pantheon data better than the Hubble data.