Do you want to publish a course? Click here

$k$-Inflation-corrected Einstein-Gauss-Bonnet Gravity with Massless Primordial Gravitons

68   0   0.0 ( 0 )
 Added by Vasilis Oikonomou
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the present paper, we study the inflationary phenomenology of a $k$-inflation corrected Einstein-Gauss-Bonnet theory. Non-canonical kinetic terms are known for producing Jean instabilities or superluminal sound wave velocities in the aforementioned era, but we demonstrate in this work that by adding Gauss-Bonnet string corrections and assuming that the non-canonical kinetic term $omega X^gamma$ is in quadratic, one can obtain a ghost free description. Demanding compatibility with the recent GW170817 event forces one to accept that the relation $ddotxi=Hdotxi$ for the scalar coupling function $xi (phi)$. As a result, the scalar functions of the theory are revealed to be interconnected and by assuming a specific form for one of them, specifies immediately the other. Here, we shall assume that the scalar potential is directly derivable from the equations of motion, once the Gauss-Bonnet coupling is appropriately chosen, but obviously the opposite is feasible as well. As a result, each term entering the equations of motion, can be written in terms of the scalar field and a relatively tractable phenomenology is produced. For quadratic kinetic terms, the resulting scalar potential is quite elegant functionally. Different exponents, which lead to either a more perplexed solution for the scalar potential, are still a possibility which was not further studied. We also discuss in brief the non-Gaussianities issue under the slow-roll and constant-roll conditions holding true, and we demonstrate that the predicted amount of non-Gaussianities is significantly enhanced in comparison to the $k$-inflation free Einstein-Gauss-Bonnet theory.



rate research

Read More

In this paper we investigate the inflationary phenomenology of an Einstein-Gauss-Bonnet theory with the extension of a logarithmic modified $f(R)$ gravity, compatible with the GW170817 event. The main idea of our work is to study different results for an almost linear Ricci scalar through logarithmic corrections and examine whether such model is viable. First of all, the theoretical framework under slow-roll evolution of the scalar field is presented and also developed the formalism of the constant-roll evolution making predictions for the non- Gaussianities of the models is developed , since the constant-roll evolution is known to enhance non-Gaussianities. As shown, the non-Gaussianities are of the order $mathcal{O}sim(10^{-1})$. Furthermore, the slow-roll indices and the observational indices of inflation, are calculated for several models of interest. As demonstrated, the phenomenological viability of the models at hand is achieved for a wide range of the free parameters and the logarithmic term has a minor contribution to numerical calculations, as expected.
We propose a novel $k$-Gauss-Bonnet model, in which a kinetic term of scalar field is allowed to non-minimally couple to the Gauss-Bonnet topological invariant in the absence of a potential of scalar field. As a result, this model is shown to admit an isotropic power-law inflation provided that the scalar field is phantom. Furthermore, stability analysis based on the dynamical system method is performed to indicate that this inflation solution is indeed stable and attractive. More interestingly, a gradient instability in tensor perturbations is shown to disappear in this model.
We present results from a numerical study of spherical gravitational collapse in shift symmetric Einstein dilaton Gauss-Bonnet (EdGB) gravity. This modified gravity theory has a single coupling parameter that when zero reduces to general relativity (GR) minimally coupled to a massless scalar field. We first show results from the weak EdGB coupling limit, where we obtain solutions that smoothly approach those of the Einstein-Klein-Gordon system of GR. Here, in the strong field case, though our code does not utilize horizon penetrating coordinates, we nevertheless find tentative evidence that approaching black hole formation the EdGB modifications cause the growth of scalar field hair, consistent with known static black hole solutions in EdGB gravity. For the strong EdGB coupling regime, in a companion paper we first showed results that even in the weak field (i.e. far from black hole formation), the EdGB equations are of mixed type: evolution of the initially hyperbolic system of partial differential equations lead to formation of a region where their character changes to elliptic. Here, we present more details about this regime. In particular, we show that an effective energy density based on the Misner-Sharp mass is negative near these elliptic regions, and similarly the null convergence condition is violated then.
302 - Shinsuke Kawai , Jinsu Kim 2021
Primordial blackholes formed in the early Universe via gravitational collapse of over-dense regions may contribute a significant amount to the present dark matter relic density. Inflation provides a natural framework for the production mechanism of primordial blackholes. For example, single field inflation models with a fine-tuned scalar potential may exhibit a period of ultra-slow-roll, during which the curvature perturbation may be enhanced to become seeds of the primordial blackholes formed as the corresponding scales reenter the horizon. In this work we propose an alternative mechanism for the primordial blackhole formation. We consider a model in which a scalar field is coupled to the Gauss-Bonnet term, and show that primordial blackholes may be seeded when a scalar potential term and the Gauss-Bonnet coupling term are nearly balanced. Large curvature perturbation in this model not only leads to the production of primordial blackholes but it also sources gravitational waves at the second order. We calculate the present density parameter of the gravitational waves and discuss the detectability of the signals by comparing them with sensitivity bounds of future gravitational wave experiments.
We study the slow-roll single field inflation in the context of the consistent $Dto4$ Einstein-Gauss-Bonnet gravity that was recently proposed in cite{Aoki:2020lig}. In addition to the standard attractor regime, we find a new attractor regime which we call the Gauss-Bonnet attractor as the dominant contribution comes from the Gauss-Bonnet term. Around this attractor solution, we find power spectra and spectral tilts for the curvature perturbations and gravitational waves (GWs) and also a model-independent consistency relation among observable quantities. The Gauss-Bonnet term provides a nonlinear $k^4$ term to the GWs dispersion relation which has the same order as the standard linear $k^2$ term at the time of horizon crossing around the Gauss-Bonnet attractor. The Gauss-Bonnet attractor regime thus provides a new scenario for the primordial GWs which can be tested by observations. Finally, we study non-Gaussianity of GWs in this model and estimate the nonlinear parameters $f^{s_1s_2s_3}_{rm NL,;sq}$ and $f^{s_1s_2s_3}_{rm NL,;eq}$ by fitting the computed GWs bispectra with the local-type and equilateral-type templates respectively at the squeezed limit and at the equilateral shape. For helicities $(+++)$ and $( -- )$, $f^{s_1s_2s_3}_{rm NL,;sq}$ is larger while $f^{s_1s_2s_3}_{rm NL,;eq}$ is larger for helicities $(++-)$ and $(--+)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا