No Arabic abstract
Gravity is attributed to the spacetime curvature in classical General Relativity (GR). But, other equivalent formulation or representations of GR, such as torsion or non-metricity have altered the perception. We consider the Weyl-type $f(Q, T)$ gravity, where $Q$ represents the non-metricity and $T$ is the trace of energy momentum temsor, in which the vector field $omega_{mu}$ determines the non-metricity $Q_{mu u alpha}$ of the spacetime. In this work, we employ the well-motivated $f(Q, T)= alpha Q+ frac{beta}{6k^{2}} T$, where $alpha$ and $beta$ are the model parameters. Furthermore, we assume that the universe is dominated by the pressure-free matter, i.e. the case of dust ($p=0$). We obtain the solution of field equations similar to a power-law in Hubble parameter $H(z)$. We investigate the cosmological implications of the model by constraining the model parameter $alpha$ and $beta$ using the recent 57 points Hubble data and 1048 points Pantheon supernovae data. To study various dark energy models, we use statefinder analysis to address the current cosmic acceleration. We also observe the $Om$ diagnostic describing various phases of the universe. Finally, it is seen that the solution which mimics the power-law fits well with the Pantheon data better than the Hubble data.
We provide for the first time the growth index of linear matter fluctuations of the power law $f(T) propto (-T)^{b}$ gravity model. We find that the asymptotic form of this particular $f(T)$ model is $gamma approx frac{6}{11-6b}$ which obviously extends that of the $Lambda$CDM model, $gamma_{Lambda}approx 6/11$. Finally, we generalize the growth index analysis of $f(T)$ gravity in the case where $gamma$ is allowed to vary with redshift.
$f(Q,T)$ gravity is a novel extension of the symmetric teleparallel gravity where the Lagrangian $L$ is represented through an arbitrary function of the nonmetricity $Q$ and the trace of the energy-momentum tensor $T$ cite{fqt}. In this work, we have constrained a widely used $f(Q,T)$ gravity model of the form $f(Q,T) = Q^{n+1} + m T$ from the primordial abundances of the light elements to understand its viability in Cosmology. We report that the $f(Q,T)$ gravity model can elegantly explain the observed abundances of Helium and Deuterium while the Lithium problem persists. From the constraint on the expansion factor in the range $0.9425 lesssim Z lesssim1.1525$, we report strict constraints on the parameters $m$ and $n$ in the range $-1.13 lesssim n lesssim -1.08$ and $-5.86 lesssim m lesssim12.52$ respectively.
The universal character of the gravitational interaction provided by the equivalence principle motivates a geometrical description of gravity. The standard formulation of General Relativity `a la Einstein attributes gravity to the spacetime curvature, to which we have grown accustomed. However, this perception has masked the fact that two alternative, though equivalent, formulations of General Relativity in flat spacetimes exist, where gravity can be fully ascribed either to torsion or to non-metricity. The latter allows a simpler geometrical formulation of General Relativity that is oblivious to the affine spacetime structure. Generalisations along this line permit to generate teleparallel and symmetric teleparallel theories of gravity with exceptional properties. In this work we explore modified gravity theories based on non-linear extensions of the non-metricity scalar. After presenting some general properties and briefly studying some interesting background cosmologies (including accelerating solutions with relevance for inflation and dark energy), we analyse the behaviour of the cosmological perturbations. Tensor perturbations feature a re-scaling of the corresponding Newtons constant, while vector perturbations do not contribute in the absence of vector sources. In the scalar sector we find two additional propagating modes, hinting that $f(Q)$ theories introduce, at least, two additional degrees of freedom. These scalar modes disappear around maximally symmetric backgrounds because of the appearance of an accidental residual gauge symmetry corresponding to a restricted diffeomorphism. We finally discuss the potential strong coupling problems of these maximally symmetric backgrounds caused by the discontinuity in the number of propagating modes.
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor and $eta$ the model parameter (constant). We first investigated an inflationary scenario where the inflation is driven purely due to geometric effects outside of GR. We found the inflation observables to be independent of the number of e-foldings in this setup. The computed value of the spectral index is consistent with latest Planck 2018 dataset while the scalar to tensor ratio is a bit higher. We then proceeded to analyze the behavior of an inflation driven by $f(R,T)$ gravity coupled with a real scalar field. By taking the slow-roll approximation, we generated interesting scenarios where a Klein Gordon potential leads to observationally consistent inflation observables. Our results makes it clear-cut that in addition to the Ricci scalar and scalar fields, the trace of energy momentum tensor also play a major role in driving inflationary scenarios.
The evolution of the configurational entropy of the universe relies on the growth rate of density fluctuations and on the Hubble parameter. In this work, I present the evolution of configurational entropy for the power-law $f(T)$ gravity model of the form $f(T) = zeta (-T)^ b$, where, $zeta = (6 H_{0}^{2})^{(1-s)}frac{Omega_{P_{0}}}{2 s -1}$ and $b$ a free parameter. From the analysis, I report that the configurational entropy in $f(T)$ gravity is negative and decreases with increasing scale factor and therefore consistent with an accelerating universe. The decrease in configurational entropy is the highest when $b$ vanishes since the effect of dark energy is maximum when $b=0$. Additionally, I find that as the parameter $b$ increases, the growth rate, growing mode, and the matter density parameter evolve slowly whereas the Hubble parameter evolves rapidly. The rapid evolution of the Hubble parameter in conjunction with the growth rate for the $b=0$ may provide an explanation for the large dissipation of configurational entropy.