Do you want to publish a course? Click here

Discrete Spectral Transformations of Skew Orthogonal Polynomials and Associated Discrete Integrable Systems

172   0   0.0 ( 0 )
 Added by Hiroshi Miki
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Discrete spectral transformations of skew orthogonal polynomials are presented. From these spectral transformations, it is shown that the corresponding discrete integrable systems are derived both in 1+1 dimension and in 2+1 dimension. Especially in the (2+1)-dimensional case, the corresponding system can be extended to 2x2 matrix form. The factorization theorem of the Christoffel kernel for skew orthogonal polynomials in random matrix theory is presented as a by-product of these transformations.



rate research

Read More

Skew-orthogonal polynomials (SOPs) arise in the study of the n-point distribution function for orthogonal and symplectic random matrix ensembles. Motivated by the average of characteristic polynomials of the Bures random matrix ensemble studied in [22], we propose the concept of partial-skew-orthogonal polynomials (PSOPs) as a modification of the SOPs, and then the PSOPs with a variety of special skew-symmetric kernels and weight functions are addressed. By considering appropriate deformations of the weight functions, we derive nine integrable lattices in different dimensions. As a consequence, the tau-functions for these systems are shown to be expressed in terms of Pfaffians and the wave vectors PSOPs. In fact, the tau-functions also admit the representations of multiple integrals. Among these integrable lattices, some of them are known, while the others are novel to the best of our knowledge. In particular, one integrable lattice is related to the partition function of the Bures random matrix ensemble. Besides, we derive a discrete integrable lattice, which can be used to compute certain vector Pade approximants. This yields the first example regarding the connection between integrable lattices and vector Pade approximants, for which Hietarinta, Joshi and Nijhoff pointed out that This field remains largely to be explored. in the recent monograph [27, Section 4.4] .
In this paper we present novel integrable symplectic maps, associated with ordinary difference equations, and show how they determine, in a remarkably diverse manner, the integrability, including Lax pairs and the explicit solutions, for integrable partial difference equations which are the discrete counterparts of integrable partial differential equations of Korteweg-de Vries-type (KdV-type). As a consequence it is demonstrated that several distinct Hamiltonian systems lead to one and the same difference equation by means of the Liouville integrability framework. Thus, these integrable symplectic maps may provide an efficient tool for characterizing, and determining the integrability of, partial difference equations.
74 - Yuri B. Suris 2018
In this paper, we discuss several concepts of the modern theory of discrete integrable systems, including: - Time discretization based on the notion of Backlund transformation; - Symplectic realizations of multi-Hamiltonian structures; - Interrelations between discrete 1D systems and lattice 2D systems; - Multi-dimensional consistency as integrability of discrete systems; - Interrelations between integrable systems of quad-equations and integrable systems of Laplace type; - Pluri-Lagrangian structure as integrability of discrete variational systems. All these concepts are illustrated by the discrete time Toda lattices and their relativistic analogs.
180 - Anton Dzhamay 2013
We establish the Lagrangian nature of the discrete isospectral and isomonodromic dynamical systems corresponding to the re-factorization transformations of the rational matrix functions on the Riemann sphere. Specifically, in the isospectral case we generalize the Moser-Veselov approach to integrability of discrete systems via the re-factorization of matrix polynomials to a more general class of matrix rational functions that have a simple divisor and, in the quadratic case, explicitly write the Lagrangian function for such systems. Next we show that if we let certain parameters in this Lagrangian to be time-dependent, the resulting Euler-Lagrange equations describe the isomonodromic transformations of systems of linear difference equations. It is known that in some special cases such equations reduce to the difference Painleve equation. As an example, we show how to obtain the difference Painlev`e V equation in this way, and hence we establish that this equation can be written in the Lagrangian form.
81 - Ilia Krasikov 2002
We consider a problem of bounding the maximal possible multiplicity of a zero at of some expansions $sum a_i F_i(x)$, at a certain point $c,$ depending on the chosen family ${F_i }$. The most important example is a polynomial with $c=1.$ It is shown that this question naturally leads to discrete orthogonal polynomials. Using this connection we derive some new bounds, in particular on the multiplicity of the zero at one of a polynomial with a prescribed norm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا