No Arabic abstract
We present a study of the radial distribution of dust species in young brown dwarf disks. Our work is based on a compositional analysis of the 10 and 20 micron silicate emission features for brown dwarfs in the Taurus-Auriga star-forming region. A fundamental finding of our work is that brown dwarfs exhibit stronger signs of dust processing in the cold component of the disk, compared to the higher mass T Tauri stars in Taurus. For nearly all of our targets, we find a flat disk structure, which is consistent with the stronger signs of dust processing observed in these disks. For the case of one brown dwarf, 2M04230607, we find the forsterite mass fraction to be a factor of ~3 higher in the outer disk compared to the inner disk region. Simple large-scale radial mixing cannot account for this gradient in the dust chemical composition, and some local crystalline formation mechanism may be effective in this disk. The relatively high abundance of crystalline silicates in the outer cold regions of brown dwarf disks provides an interesting analogy to comets. In this context, we have discussed the applicability of the various mechanisms that have been proposed for comets on the formation and the outward transport of high-temperature material. We also present Chandra X-ray observations for two Taurus brown dwarfs, 2M04414825 and CFHT-BD-Tau 9. We find 2M04414825, which has a ~12% crystalline mass fraction, to be more than an order of magnitude brighter in X-ray than CFHT-BD-Tau 9, which has a ~35% crystalline mass fraction. Combining with previous X-ray data, we find the inner disk crystalline mass fractions to be anti-correlated with the X-ray strength.
The study of the properties of disks around young brown dwarfs can provide important clues on the formation of these very low-mass objects and on the possibility of forming planetary systems around them. The presence of warm dusty disks around brown dwarfs is well known, based on near- and mid-infrared studies. High angular resolution observations of the cold outer disk are limited; we used ALMA to attempt a first survey of young brown dwarfs in the $rho$-Oph star-forming region. All 17 young brown dwarfs in our sample were observed at 890 $mu $m in the continuum at $sim0.!^{primeprime}5$ angular resolution. The sensitivity of our observations was chosen to detect $sim0.5$ M$_oplus$ of dust. We detect continuum emission in 11 disks ($sim65$% of the total), and the estimated mass of dust in the detected disks ranges from $sim0.5$ to $sim6$ M$_oplus$. These disk masses imply that planet formation around brown dwarfs may be relatively rare and that the supra-Jupiter mass companions found around some brown dwarfs are probably the result of a binary system formation. We find evidence that the two brightest disks in $rho$-Oph have sharp outer edges at R<~25 AU, in contrast to disks around Taurus brown dwarfs. This difference may suggest that the different environment in $rho$-Oph may lead to significant differences in disk properties. A comparison of the M$_{disk}$/M$_ast$ ratio for brown dwarf and solar-mass systems also shows a possible deficit of mass in brown dwarfs, which could support the evidence for dynamical truncation of disks in the substellar regime. These findings are still tentative and need to be put on firmer grounds by studying the gaseous disks around brown dwarfs and by performing a more systematic and unbiased survey of the disk population around the more massive stars.
We report the discovery of the youngest brown dwarf with a disk at 102 pc from the Sun, WISEA~J120037.79-784508.3 (W1200-7845), via the Disk Detective citizen science project. We establish that W1200-7845 is located in the 3.7$substack{+4.6 -1.4}$ Myr-old $varepsilon$~Cha association. Its spectral energy distribution (SED) exhibits clear evidence of an infrared (IR) excess, indicative of the presence of a warm circumstellar disk. Modeling this warm disk, we find the data are best fit using a power-law description with a slope $alpha = -0.94$, which suggests it is a young, Class II type disk. Using a single blackbody disk fit, we find $T_{eff, disk} = 521 K$ and $L_{IR}/L_{*} = 0.14$. The near-infrared spectrum of W1200-7845 matches a spectral type of M6.0$gamma pm 0.5$, which corresponds to a low surface gravity object, and lacks distinctive signatures of strong Pa$beta$ or Br$gamma$ accretion. Both our SED fitting and spectral analysis indicate the source is cool ($T_{eff} = $2784-2850 K), with a mass of 42-58 $M_{Jup}$, well within the brown dwarf regime. The proximity of this young brown dwarf disk makes the system an ideal benchmark for investigating the formation and early evolution of brown dwarfs.
Accurate temperature calculations for circumstellar disks are particularly important for their chemical evolution. Their temperature distribution is determined by the optical properties of the dust grains, which, among other parameters, depend on their radius. However, in most disk studies, only average optical properties and thus an average temperature is assumed to account for an ensemble of grains with different radii. We investigate the impact of subdividing the grain radius distribution into multiple sub-intervals on the resulting dust temperature distribution and spectral energy distribution (SED). These quantities were computed for two different scenarios: (1) Radius distribution represented by 16 logarithmically distributed radius intervals, and (2) radius distribution represented by a single grain species with averaged optical properties (reference). Within the considered parameter range, i.e., of grain radii between 5 nm and 1 mm and an optically thin and thick disk with a parameterized density distribution, we obtain the following results: In optically thin disk regions, the temperature spread can be as large as ~63% and the relative grain surface below a certain temperature is lower than in the reference disk. With increasing optical depth, the difference in the midplane temperature and the relative grain surface below a certain temperature decreases. Furthermore, below ~20K, this fraction is higher for the reference disk than for the case of multiple grain radii, while it shows the opposite behavior for temperatures above this threshold. The thermal emission in the case of multiple grain radii at short wavelengths is stronger than for the reference disk. The freeze-out radius is a function of grain radius, spanning a radial range between the coldest and warmest grain species of ~30AU.
A key parameter governing the secular evolution of protoplanetary disks is their outer radius. In this paper, the feedback of realistic dust grain size distributions onto the gas emission is investigated. Models predict that the difference of dust and gas extents as traced by CO is primarily caused by differences in the optical depth of lines vs continuum. The main effect of radial drift is the sharp decrease in the intensity profile at the outer edge. The gas radial extent can easily range within a factor of 2 for models with different turbulence. A combination of grain growth and vertical settling leads to thermal de-coupling between gas and dust at intermediate scale-heights. A proper treatment of the gas thermal structure within dust gaps will be fundamental to disentangle surface density gaps from gas temperature gaps.
The formation of brown dwarfs (BDs) due to the fragmentation of proto-stellar disks undergoing pairwise encounters was investigated. High resolution allowed the use of realistic initial disk models where both the vertical structure and the local Jeans mass were resolved. The results show that objects with masses ranging from giant planets to low mass stars can form during such encounters from initially stable disks. The parameter space of initial spin-orbit orientations and the azimuthal angles for each disk was explored. An upper limit on the initial Toomre Q value of ~2 was found for fragmentation to occur. Depending on the initial configuration, shocks, tidal-tail structures and mass inflows were responsible for the condensation of disk gas. Retrograde disks were generally more likely to fragment. When the interaction timescale was significantly shorter than the disks dynamical timescales, the proto-stellar disks tended to be truncated without forming objects. The newly-formed objects had masses ranging from 0.9 to 127 Jupiter masses, with the majority in the BD regime. They often resided in star-BD multiples and in some cases also formed hierarchical orbiting systems. Most of them had large angular momenta and highly flattened, disk-like shapes. The objects had radii ranging from 0.1 to 10 AU. The disk gas was assumed to be locally isothermal, appropriate for the short cooling times in extended proto-stellar disks, but not for condensed objects. An additional case with explicit cooling that reduced to zero for optically thick gas was simulated to test the extremes of cooling effectiveness and it was still possible to form objects in this case. Detailed radiative transfer is expected to lengthen the internal evolution timescale for these objects, but not to alter our basic results.