Do you want to publish a course? Click here

Gas vs dust radial extent in disks: the importance of their thermal interplay

46   0   0.0 ( 0 )
 Added by Stefano Facchini Dr
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A key parameter governing the secular evolution of protoplanetary disks is their outer radius. In this paper, the feedback of realistic dust grain size distributions onto the gas emission is investigated. Models predict that the difference of dust and gas extents as traced by CO is primarily caused by differences in the optical depth of lines vs continuum. The main effect of radial drift is the sharp decrease in the intensity profile at the outer edge. The gas radial extent can easily range within a factor of 2 for models with different turbulence. A combination of grain growth and vertical settling leads to thermal de-coupling between gas and dust at intermediate scale-heights. A proper treatment of the gas thermal structure within dust gaps will be fundamental to disentangle surface density gaps from gas temperature gaps.



rate research

Read More

136 - B. Riaz , M. Honda , H. Campins 2011
We present a study of the radial distribution of dust species in young brown dwarf disks. Our work is based on a compositional analysis of the 10 and 20 micron silicate emission features for brown dwarfs in the Taurus-Auriga star-forming region. A fundamental finding of our work is that brown dwarfs exhibit stronger signs of dust processing in the cold component of the disk, compared to the higher mass T Tauri stars in Taurus. For nearly all of our targets, we find a flat disk structure, which is consistent with the stronger signs of dust processing observed in these disks. For the case of one brown dwarf, 2M04230607, we find the forsterite mass fraction to be a factor of ~3 higher in the outer disk compared to the inner disk region. Simple large-scale radial mixing cannot account for this gradient in the dust chemical composition, and some local crystalline formation mechanism may be effective in this disk. The relatively high abundance of crystalline silicates in the outer cold regions of brown dwarf disks provides an interesting analogy to comets. In this context, we have discussed the applicability of the various mechanisms that have been proposed for comets on the formation and the outward transport of high-temperature material. We also present Chandra X-ray observations for two Taurus brown dwarfs, 2M04414825 and CFHT-BD-Tau 9. We find 2M04414825, which has a ~12% crystalline mass fraction, to be more than an order of magnitude brighter in X-ray than CFHT-BD-Tau 9, which has a ~35% crystalline mass fraction. Combining with previous X-ray data, we find the inner disk crystalline mass fractions to be anti-correlated with the X-ray strength.
ALMA observations of protoplanetary disks confirm earlier indications that there is a clear difference between the dust and gas radial extents. The origin of this difference is still debated, with both radial drift of the dust and optical depth effects suggested in the literature. In this work, the feedback of realistic dust particle distributions onto the gas chemistry and molecular emissivity is investigated, with a particular focus on CO isotopologues. The radial dust grain size distribution is determined using dust evolution models that include growth, fragmentation and radial drift. A new version of the code DALI is used to take into account how dust surface area and density influence the disk thermal structure, molecular abundances and excitation. The difference of dust and gas radial sizes is largely due to differences in the optical depth of CO lines and millimeter continuum, without the need to invoke radial drift. The effect of radial drift is primarily visible in the sharp outer edge of the continuum intensity profile. The gas outer radius probed by $^{12}$CO emission can easily differ by a factor of $sim 2$ between the models for a turbulent $alpha$ ranging between typical values. Grain growth and settling concur in thermally decoupling the gas and dust components, due to the low collision rate with large grains. As a result, the gas can be much colder than the dust at intermediate heights, reducing the CO excitation and emission, especially for low turbulence values. Also, due to disk mid-plane shadowing, a second CO thermal desorption (rather than photodesorption) front can occur in the warmer outer mid-plane disk. The models are compared to ALMA observations of HD 163296 as a test case. In order to reproduce the observed CO snowline of the system, a binding energy for CO typical of ice mixtures needs to be used rather than the lower pure CO value.
Aims and Methods. Accretion bursts triggered by the magnetorotational instability (MRI) in the innermost disk regions were studied for protoplanetary gas-dust disks formed from prestellar cores of various mass $M_{rm core}$ and mass-to-magnetic flux ratio $lambda$. Numerical magnetohydrodynamics simulations in the thin-disk limit were employed to study the long-term ($sim 1.0$~Myr) evolution of protoplanetary disks with an adaptive turbulent $alpha$-parameter, which depends explicitly on the strength of the magnetic field and ionization fraction in the disk. The numerical models also feature the co-evolution of gas and dust, including the back-reaction of dust on gas and dust growth. Results. Dead zone with a low ionization fraction $x <= 10^{-13}$ and temperature on the order of several hundred Kelvin forms in the inner disk soon after its formation, extending from several to several tens of astronomical units depending on the model. The dead zone features pronounced dust rings that are formed due to the concentration of grown dust particles in the local pressure maxima. Thermal ionization of alkaline metals in the dead zone trigger the MRI and associated accretion burst, which is characterized by a sharp rise, small-scale variability in the active phase, and fast decline once the inner MRI-active region is depleted of matter. The burst occurrence frequency is highest in the initial stages of disk formation, and is driven by gravitational instability (GI), but declines with diminishing disk mass-loading from the infalling envelope. There is a causal link between the initial burst activity and the strength of GI in the disk fueled by mass infall from the envelope. Abridged.
The large majority of protoplanetary disks have very compact ($lesssim15,$AU) continuum emission at mm wavelengths. However, high angular resolution observations that resolve these small disks are still lacking, due to their intrinsically fainter emission compared with large bright disks. In this letter, we present $1.3,$mm ALMA data of the faint ($sim10,$mJy) disk orbiting the TTauri star CX Tau at a resolution of $sim40,$mas, $sim5,$AU in diameter. The mm-dust disk is compact, with a 68$%$ enclosing flux radius of 14$,$AU, and the intensity profile exhibits a sharp drop between 10-20$,$AU, and a shallow tail between 20-40$,$AU. No clear signatures of substructure in the dust continuum are observed, down to the same sensitivity level of the DSHARP large program. However, the angular resolution does not allow to detect substructures at a scale of the disk aspect ratio in the inner regions. The radial intensity profile resembles well the inner regions of more extended disks imaged at the same resolution in DSHARP, but with no rings present in the outer disk. No inner cavity is detected, even though the disk has been classified as a transition disk from the spectral energy distribution in the near infrared. The emission of $^{12}$CO is much more extended, with a 68$%$ enclosing flux radius of 75$,$AU. The large difference of the mm dust and gas extents ($>5$) strongly points to the occurrence of radial drift, and matches well the predictions of theoretical models.
100 - S. Heese 2017
Accurate temperature calculations for circumstellar disks are particularly important for their chemical evolution. Their temperature distribution is determined by the optical properties of the dust grains, which, among other parameters, depend on their radius. However, in most disk studies, only average optical properties and thus an average temperature is assumed to account for an ensemble of grains with different radii. We investigate the impact of subdividing the grain radius distribution into multiple sub-intervals on the resulting dust temperature distribution and spectral energy distribution (SED). These quantities were computed for two different scenarios: (1) Radius distribution represented by 16 logarithmically distributed radius intervals, and (2) radius distribution represented by a single grain species with averaged optical properties (reference). Within the considered parameter range, i.e., of grain radii between 5 nm and 1 mm and an optically thin and thick disk with a parameterized density distribution, we obtain the following results: In optically thin disk regions, the temperature spread can be as large as ~63% and the relative grain surface below a certain temperature is lower than in the reference disk. With increasing optical depth, the difference in the midplane temperature and the relative grain surface below a certain temperature decreases. Furthermore, below ~20K, this fraction is higher for the reference disk than for the case of multiple grain radii, while it shows the opposite behavior for temperatures above this threshold. The thermal emission in the case of multiple grain radii at short wavelengths is stronger than for the reference disk. The freeze-out radius is a function of grain radius, spanning a radial range between the coldest and warmest grain species of ~30AU.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا