Do you want to publish a course? Click here

A Numerical Study of Brown Dwarf Formation via Encounters of Protostellar Disks

125   0   0.0 ( 0 )
 Added by Sijing Shen
 Publication date 2009
  fields Physics
and research's language is English
 Authors Sijing Shen




Ask ChatGPT about the research

The formation of brown dwarfs (BDs) due to the fragmentation of proto-stellar disks undergoing pairwise encounters was investigated. High resolution allowed the use of realistic initial disk models where both the vertical structure and the local Jeans mass were resolved. The results show that objects with masses ranging from giant planets to low mass stars can form during such encounters from initially stable disks. The parameter space of initial spin-orbit orientations and the azimuthal angles for each disk was explored. An upper limit on the initial Toomre Q value of ~2 was found for fragmentation to occur. Depending on the initial configuration, shocks, tidal-tail structures and mass inflows were responsible for the condensation of disk gas. Retrograde disks were generally more likely to fragment. When the interaction timescale was significantly shorter than the disks dynamical timescales, the proto-stellar disks tended to be truncated without forming objects. The newly-formed objects had masses ranging from 0.9 to 127 Jupiter masses, with the majority in the BD regime. They often resided in star-BD multiples and in some cases also formed hierarchical orbiting systems. Most of them had large angular momenta and highly flattened, disk-like shapes. The objects had radii ranging from 0.1 to 10 AU. The disk gas was assumed to be locally isothermal, appropriate for the short cooling times in extended proto-stellar disks, but not for condensed objects. An additional case with explicit cooling that reduced to zero for optically thick gas was simulated to test the extremes of cooling effectiveness and it was still possible to form objects in this case. Detailed radiative transfer is expected to lengthen the internal evolution timescale for these objects, but not to alter our basic results.



rate research

Read More

142 - Sijing Shen 2006
The formation of brown dwarfs via encounters between proto-stars has been confirmed with high-resolution numerical simulations with a restricted treatment of the thermal conditions. The new results indicate that young brown dwarfs (BDs) formed this way are disk-like and often reside in multiple systems. The newly-formed proto-BDs disks are up to 18 AU in size and spin rapidly making small-scale bipolar outflows, fragmentation and the possible formation of planetary companions likely as have recently been observed for BDs. The object masses range from 2 to 73 Jupiter masses, distributed in a manner consistent with the observed sub-stellar initial mass function. The simulations usually form multiple BDs on eccentric orbits about a star. One such system was hierarchical, a BD binary in orbit around a star, which may explain recently observed hierarchical systems. One third of the BDs were unbound after a few thousand years and interactions among orbiting BDs may eject more or add to the number of binaries. Improvements over prior work include resolution down to a Jupiter mass, self-consistent models of the vertical structure of the initial disks and careful attention to avoid artificial fragmentation.
Understanding the dominant brown dwarf and giant planet formation processes, and finding out whether these processes rely on completely different mechanisms or share common channels represents one of the major challenges of astronomy and remains the subject of heated debates. It is the aim of this review to summarize the latest developments in this field and to address the issue of origin by confronting different brown dwarf and giant planet formation scenarios to presently available observational constraints. As examined in the review, if objects are classified as Brown Dwarfs or Giant Planets on the basis of their formation mechanism, it has now become clear that their mass domains overlap and that there is no mass limit between these two distinct populations. Furthermore, while there is increasing observational evidence for the existence of non-deuterium burning brown dwarfs, some giant planets, characterized by a significantly metal enriched composition, might be massive enough to ignite deuterium burning in their core. Deuterium burning (or lack of) thus plays no role in either brown dwarf or giant planet formation. Consequently, we argue that the IAU definition to distinguish these two populations has no physical justification and brings scientific confusion. In contrast, brown dwarfs and giant planets might bear some imprints of their formation mechanism, notably in their mean density and in the physical properties of their atmosphere. Future direct imaging surveys will undoubtedly provide crucial information and perhaps provide some clear observational diagnostics to unambiguously distinguish these different astrophysical objects.
We numerically studied close encounters between a young stellar system hosting a massive, gravitationally fragmenting disk and an intruder diskless star with the purpose to determine the evolution of fragments that have formed in the disk prior to the encounter. Numerical hydrodynamics simulations in the non-inertial frame of reference of the host star were employed to simulate the prograde and retrograde co-planar encounters. The initial configuration of the target system (star plus disk) was obtained via a separate numerical simulation featuring the gravitational collapse of a solar-mass pre-stellar core. We found that close encounters can lead to the ejection of fragments that have formed in the disk of the target prior to collision. In particular, prograde encounters are more efficient in ejecting the fragments than the retrograde encounters. The masses of ejected fragments are in the brown-dwarf mass regime. They also carry away an appreciable amount of gas in their gravitational radius of influence, implying that these objects may possess extended disks or envelopes, as also suggested by Thies et al. (2015). Close encounters can also lead to the ejection of entire spiral arms, followed by fragmentation and formation of freely-floating objects straddling the planetary mass limit. However, numerical simulations with a higher resolution are needed to confirm this finding.
We study rapidly accreting, gravitationally unstable disks with a series of global, three dimensional, numerical experiments using the code ORION. In this paper we conduct a numerical parameter study focused on protostellar disks, and show that one can predict disk behavior and the multiplicity of the accreting star system as a function of two dimensionless parameters which compare the disks accretion rate to its sound speed and orbital period. Although gravitational instabilities become strong, we find that fragmentation into binary or multiple systems occurs only when material falls in several times more rapidly than the canonical isothermal limit. The disk-to-star accretion rate is proportional to the infall rate, and governed by gravitational torques generated by low-m spiral modes. We also confirm the existence of a maximum stable disk mass: disks that exceed ~50% of the total system mass are subject to fragmentation and the subsequent formation of binary companions.
126 - B. Riaz , M. Honda , H. Campins 2011
We present a study of the radial distribution of dust species in young brown dwarf disks. Our work is based on a compositional analysis of the 10 and 20 micron silicate emission features for brown dwarfs in the Taurus-Auriga star-forming region. A fundamental finding of our work is that brown dwarfs exhibit stronger signs of dust processing in the cold component of the disk, compared to the higher mass T Tauri stars in Taurus. For nearly all of our targets, we find a flat disk structure, which is consistent with the stronger signs of dust processing observed in these disks. For the case of one brown dwarf, 2M04230607, we find the forsterite mass fraction to be a factor of ~3 higher in the outer disk compared to the inner disk region. Simple large-scale radial mixing cannot account for this gradient in the dust chemical composition, and some local crystalline formation mechanism may be effective in this disk. The relatively high abundance of crystalline silicates in the outer cold regions of brown dwarf disks provides an interesting analogy to comets. In this context, we have discussed the applicability of the various mechanisms that have been proposed for comets on the formation and the outward transport of high-temperature material. We also present Chandra X-ray observations for two Taurus brown dwarfs, 2M04414825 and CFHT-BD-Tau 9. We find 2M04414825, which has a ~12% crystalline mass fraction, to be more than an order of magnitude brighter in X-ray than CFHT-BD-Tau 9, which has a ~35% crystalline mass fraction. Combining with previous X-ray data, we find the inner disk crystalline mass fractions to be anti-correlated with the X-ray strength.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا