Do you want to publish a course? Click here

Semiclassical Analysis for Hartree equation

252   0   0.0 ( 0 )
 Added by Remi Carles
 Publication date 2007
  fields Physics
and research's language is English
 Authors Remi Carles




Ask ChatGPT about the research

We justify WKB analysis for Hartree equation in space dimension at least three, in a regime which is supercritical as far as semiclassical analysis is concerned. The main technical remark is that the nonlinear Hartree term can be considered as a semilinear perturbation. This is in contrast with the case of the nonlinear Schrodinger equation with a local nonlinearity, where quasilinear analysis is needed to treat the nonlinearity.



rate research

Read More

105 - Yvon Maday , Carlo Marcati 2020
We prove analytic-type estimates in weighted Sobolev spaces on the eigenfunctions of a class of elliptic and nonlinear eigenvalue problems with singular potentials, which includes the Hartree-Fock equations. Going beyond classical results on the analyticity of the wavefunctions away from the nuclei, we prove weighted estimates locally at each singular point, with precise control of the derivatives of all orders. Our estimates have far-reaching consequences for the approximation of the eigenfunctions of the problems considered, and they can be used to prove a priori estimates on the numerical solution of such eigenvalue problems.
256 - Thomas Alazard 2007
We consider the semi-classical limit for the Gross-Pitaevskii equation. In order to consider non-trivial boundary conditions at infinity, we work in Zhidkov spaces rather than in Sobolev spaces. For the usual cubic nonlinearity, we obtain a point-wise description of the wave function as the Planck constant goes to zero, so long as no singularity appears in the limit system. For a cubic-quintic nonlinearity, we show that working with analytic data may be necessary and sufficient to obtain a similar result.
We study the number $P(n)$ of partitions of an integer $n$ into sums of distinct squares and derive an integral representation of the function $P(n)$. Using semi-classical and quantum statistical methods, we determine its asymptotic average part $P_{as}(n)$, deriving higher-order contributions to the known leading-order expression [M. Tran {it et al.}, Ann. Phys. (N.Y.) {bf 311}, 204 (2004)], which yield a faster convergence to the average values of the exact $P(n)$. From the Fourier spectrum of $P(n)$ we obtain hints that integer-valued frequencies belonging to the smallest Pythagorean triples $(m,p,q)$ of integers with $m^2+p^2=q^2$ play an important role in the oscillations of $P(n)$. Finally we analyze the oscillating part $delta P(n)=P(n)-P_{as}(n)$ in the spirit of semi-classical periodic orbit theory [M. Brack and R. K. Bhaduri: {it Semiclassical Physics} (Bolder, Westview Press, 2003)]. A semi-classical trace formula is derived which accurately reproduces the exact $delta P(n)$ for $n > sim 500$ using 10 pairs of `orbits. For $n > sim 4000$ only two pairs of orbits with the frequencies 4 and 5 -- belonging to the lowest Pythagorean triple (3,4,5) -- are relevant and create the prominent beating pattern in the oscillations. For $n > sim 100,000$ the beat fades away and the oscillations are given by just one pair of orbits with frequency 4.
We consider the one dimensional focusing (cubic) Nonlinear Schrodinger equation (NLS) in the semiclassical limit with exponentially decaying complex-valued initial data, whose phase is multiplied by a real parameter. We prove smooth dependence of the asymptotic solution on the parameter. Numerical results supporting our estimates of important quantities are presented.
78 - Renjun Duan , Shuangqian Liu , 2021
In the paper, we study the plane Couette flow of a rarefied gas between two parallel infinite plates at $y=pm L$ moving relative to each other with opposite velocities $(pm alpha L,0,0)$ along the $x$-direction. Assuming that the stationary state takes the specific form of $F(y,v_x-alpha y,v_y,v_z)$ with the $x$-component of the molecular velocity sheared linearly along the $y$-direction, such steady flow is governed by a boundary value problem on a steady nonlinear Boltzmann equation driven by an external shear force under the homogeneous non-moving diffuse reflection boundary condition. In case of the Maxwell molecule collisions, we establish the existence of spatially inhomogeneous non-equilibrium stationary solutions to the steady problem for any small enough shear rate $alpha>0$ via an elaborate perturbation approach using Caflischs decomposition together with Guos $L^inftycap L^2$ theory. The result indicates the polynomial tail at large velocities for the stationary distribution. Moreover, the large time asymptotic stability of the stationary solution with an exponential convergence is also obtained and as a consequence the nonnegativity of the steady profile is justified.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا