We investigate the rovibrational population redistribution of polar molecules in the electronic ground state induced by spontaneous emission and blackbody radiation. As a model system we use optically trapped LiCs molecules formed by photoassociation in an ultracold two-species gas. The population dynamics of vibrational and rotational states is modeled using an ab-initio electric dipole moment function and experimental potential energy curves. Comparison with the evolution of the v=3 electronic ground state yields good qualitative agreement. The analysis provides important input to assess applications of ultracold LiCs molecules in quantum simulation and ultracold chemistry.
Optical trapping of molecules with long coherence times is crucial for many protocols in quantum information and metrology. However, the factors that limit the lifetimes of the trapped molecules remain elusive and require improved understanding of the underlying molecular structure. Here we show that measurements of vibronic line strengths in weakly and deeply bound $^{88}$Sr$_2$ molecules, combined with textit{ab initio} calculations, allow for unambiguous identification of vibrational quantum numbers. This, in turn, enables the construction of refined excited potential energy curves that inform the selection of magic wavelengths which facilitate long vibrational coherence. We demonstrate Rabi oscillations between far-separated vibrational states that persist for nearly 100 ms.
Heavy polar molecules can be used to measure the electric dipole moment of the electron, which is a sensitive probe of physics beyond the Standard Model. The value is determined by measuring the precession of the molecules spin in a plane perpendicular to an applied electric field. The longer this precession evolves coherently, the higher the precision of the measurement. For molecules in a trap, this coherence time could be very long indeed. We evaluate the sensitivity of an experiment where neutral molecules are trapped electrically, and compare this to an equivalent measurement in a molecular beam. We consider the use of a Stark decelerator to load the trap from a supersonic source, and calculate the deceleration efficiency for YbF molecules in both strong-field seeking and weak-field seeking states. With a 1s holding time in the trap, the statistical sensitivity could be ten times higher than it is in the beam experiment, and this could improve by a further factor of five if the trap can be loaded from a source of larger emittance. We study some effects due to field inhomogeneity in the trap and find that rotation of the electric field direction, leading to an inhomogeneous geometric phase shift, is the primary obstacle to a sensitive trap-based measurement.
Electromagnetically induced absorption (EIA) was observed on a sample of $% ^{85}Rb$ in a magneto-optical trap using low intensity cw copropagating pump and probe optical fields. At moderate trapping field intensity, the EIA spectrum is determined by the Zeeman effect produced on the atomic ground-state by the trapping quadrupolar magnetic field. The use of EIA spectroscopy for the magnetic field mapping of cold atomic samples is illustrated.
Nonadiabatic transitions are known to be major loss channels for atoms in magnetic traps, but have thus far not been experimentally reported upon for trapped molecules. We have observed and quantified losses due to nonadiabatic transitions for three isotopologues of ammonia in electrostatic traps, by comparing the trapping times in traps with a zero and a non-zero electric field at the center. Nonadiabatic transitions are seen to dominate the overall loss rate even for samples at relatively high temperatures of 10-50 mK.
We investigate the dynamical process of optically trapped X$^{1}$$Sigma$$^{+}$ (v = 0) state $^{85}$Rb$^{133}$Cs molecules distributing in J = 1 and J = 3 rotational states. The considered molecules, formed from short-range photoassociation of mixed cold atoms, are subsequently confined in a crossed optical dipole trap. Based on a phenomenological rate equation, we provide a detailed study of the dynamics of $^{85}$Rb$^{133}$Cs molecules during the loading and holding processes. The inelastic collisions of $^{85}$Rb$^{133}$Cs molecules in the X$^{1}$$Sigma$$^{+}$ (v = 0, J = 1 and J = 3) states with ultracold $^{85}$Rb (or $^{133}$Cs) atoms are measured to be 1.0 (2)$times$10$^{-10}$ cm$^{3}$s$^{-1}$ (1.2 (3)$ times$ 10$^{-10}$ cm$^{3}$s$^{-1}$). Our work provides a simple and generic procedure for studying the dynamical process of trapped cold molecules in the singlet ground states.