Do you want to publish a course? Click here

Electromagnetically induced absorption in magneto-optically trapped atoms

129   0   0.0 ( 0 )
 Added by Arturo Lezama
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electromagnetically induced absorption (EIA) was observed on a sample of $% ^{85}Rb$ in a magneto-optical trap using low intensity cw copropagating pump and probe optical fields. At moderate trapping field intensity, the EIA spectrum is determined by the Zeeman effect produced on the atomic ground-state by the trapping quadrupolar magnetic field. The use of EIA spectroscopy for the magnetic field mapping of cold atomic samples is illustrated.



rate research

Read More

The atom-based traceable standard for microwave electrometry shows promising advantages by enabling stable and uniform measurement. Here we theoretically propose and then experimentally realize an alternative direct International System of Units (SI)-traceable and self-calibrated method for measuring a microwave electric field strength based on electromagnetically induced absorption (EIA) in cold Rydberg atoms. Comparing with the method of electromagnetically induced transparency, we show that the equivalence relation between microwave Rabi frequency and Autler-Townes splitting is more valid and is even more robust against the experimental parameters in the EIAs linear region. Furthermore, a narrower linewidth of cold Rydberg EIA enables us to realize a direct SI-traceable microwave-electric-field measurement as small as $sim$100 $mumathrm{!V} mathrm{cm}^{!-!1}$.
142 - Qi Zhang , Zhengyang Bai , 2018
We investigate the transient optical response property of an electromagnetically induced transparency (EIT) in a cold Rydberg atomic gas. We show that both the transient behavior and the steady-state EIT spectrum of the system depend strongly on Rydberg interaction. Especially, the response speed of the Rydberg-EIT can be five-times faster (and even higher) than the conventional EIT without the Rydberg interaction. For comparison, two different theoretical approaches (i.e. two-atom model and many-atom model) are considered, revealing that Rydberg blockade effect plays a significant role for increasing the response speed of the Rydberg-EIT. The fast-responding Rydberg-EIT by using the strong, tunable Rydberg interaction uncovered here is not only helpful for enhancing the understanding of the many-body dynamics of Rydberg atoms but also useful for practical applications in quantum information processing by using Rydberg atoms.
A reaction microscope (ReMi) has been combined with a magneto-optical trap (MOT) for the kinematically complete investigation of atomic break-up processes. With the novel MOTReMi apparatus, the momentum vectors of the fragments of laser-cooled and state-prepared lithium atoms are measured in coincidence and over the full solid angle. %Earlier attempts to realize this combination failed due to intrinsic incompatibilities of the magnetic fields required for MOT and ReMi. The first successful implementation of a MOTReMi could be realized due to an optimized design of the present setup, a nonstandard operation of the MOT, and by employing a switching cycle with alternating measuring and trapping periods. The very low target temperature in the MOT ($2mK$) allow for an excellent momentum resolution. Optical preparation of the target atoms in the excited Li $2^2P_{3/2}$ state was demonstrated providing an atomic polarization of close to 100percent. While first experimental results were reported earlier, in this work we focus on the technical description of the setup and its performance in commissioning experiments involving target ionization in $266nm$ laser pulses and in collisions with projectile ions.
We develop an approach to generate finite-range atomic interactions via optical Rydberg-state excitation and study the underlying excitation dynamics in theory and experiment. In contrast to previous work, the proposed scheme is based on resonant optical driving and the establishment of a dark state under conditions of electromagnetically induced transparency (EIT). Analyzing the driven dissipative dynamics of the atomic gas, we show that the interplay between coherent light coupling, radiative decay and strong Rydberg-Rydberg atom interactions leads to the emergence of sizeable effective interactions while providing remarkably long coherence times. The latter are studied experimentally in a cold gas of strontium atoms for which the proposed scheme is most efficient. Our measured atom loss is in agreement with the theoretical prediction based on binary effective interactions between the driven atoms.
We present experimental results on the influence of magnetic fields and laser polarization on electromagnetically induced transparency (EIT) using Rydberg levels of $^{87}$Rb atoms. The measurements are performed in a room temperature vapor cell with two counter-propagating laser beams at 480nm and 780nm in a ladder-type energy level scheme. We measure the EIT spectrum of a range of $ns_{1/2}$ Rydberg states for $n=19-27$, where the hyperfine structure can still be resolved. Our measurements span the range of magnetic fields from the low field linear Zeeman regime to the high field Paschen-Back regimes. The observed spectra are very sensitive to small changes in magnetic fields and the polarization of the laser beams. We model our observations using optical Bloch equations that take into account the full multi-level structure of the atomic states involved and the decoupling of the electronic $J$ and nuclear $I$ angular momenta in the Breit-Rabi regime. The numerical model yields excellent agreement with the observations. In addition to EIT related experiments, our results are relevant for experiments involving coherent excitation to Rydberg levels in the presence of magnetic fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا