Do you want to publish a course? Click here

Radiogenic neutron background in reactor neutrino experiments

153   0   0.0 ( 0 )
 Added by Zhiyuan Chen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a novel correlated background in the antineutrino detection using the inverse beta decay reaction. Spontaneous fissions and $(alpha,n)$ reactions in peripheral materials of the antineutrino detector, such as borosilicate glass of photomultipliers, produce fast neutrons and prompt gamma rays. If the shielding from the material to the detector target were not thick enough, neutrons and gammas could enter the target volume and mimic antineutrino signals. This paper revisits the yields and energy spectra of neutrons produced in B$(alpha,n)$N and F$(alpha,n)$Na reactions. A Geant4 based simulation has been carried out using a simplified detector geometry for the present generation reactor neutrino experiments. The background rates in these experiments are estimated. If this background was not taken into account, the value of the neutrino mixing angle $sin^22theta_{13}$ would be underestimated. We recommend that Daya Bay, RENO, Double Chooz, and JUNO, carefully examine the masses and radiopurity levels of detector materials that are close to the target and rich in boron and fluorine.



rate research

Read More

Nuclear recoil backgrounds are one of the most dangerous backgrounds for many dark matter experiments. A primary source of nuclear recoils is radiogenic neutrons produced in the detector material itself. These neutrons result from fission and $(alpha,n)$ reactions originating from uranium and thorium contamination. In this paper, we discuss neutron yields from these sources. We compile a list of $(alpha,n)$ yields for many materials common in low-background detectors, calculated using NeuCBOT, a new tool introduced in this paper, available at https://github.com/shawest/neucbot. These calculations are compared to computations made using data compilations and SOURCES-4A
Ultra-low-background experiments address some of the most important open questions in particle physics, cosmology and astrophysics: the nature of dark matter, whether the neutrino is its own antiparticle, and does the proton decay. These rare event searches require well-understood and minimized backgrounds. Simulations are used to understand backgrounds caused by naturally occurring radioactivity in the rock and in every piece of shielding and detector material used in these experiments. Most important are processes like spontaneous fission and ({alpha},n) reactions in material close to the detectors that can produce neutrons. A comparison study between two dedicated software packages is detailed. The cross section libraries, neutron yields, and spectra from the Mei-Zhang-Hime and the SOURCES-4A codes are presented. The resultant yields and spectra are used as inputs to direct dark matter detector toy models in GEANT4, to study the impact of their differences on background estimates and fits. Although differences in neutron yield calculations up to 50% were seen, there was no systematic difference between the Mei-Hime-Zhang and SOURCES-4A results. Neutron propagation simulations smooth differences in spectral shape and yield, and both tools were found to meet the broad requirements of the low-background community.
The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 meters) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5 to 20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.
We report the first demonstration of a phonon-mediated silicon detector technology that provides a primary phonon measurement in a low-voltage region, and a simultaneous indirect measurement of the ionization signal through Neganov-Trofimov-Luke amplification in a high voltage region, both in a monolithic crystal. We present characterization of charge and phonon transport between the two stages of the detector and the resulting background discrimination capability at low energies. This new detector technology has the potential to significantly enhance the sensitivity of dark matter and coherent neutrino scattering experiments beyond the capabilities of current technologies that have limited discrimination at low energies.
Determination of the neutrino mass hierarchy using a reactor neutrino experiment at $sim$60 km is analyzed. Such a measurement is challenging due to the finite detector resolution, the absolute energy scale calibration, as well as the degeneracies caused by current experimental uncertainty of $|Delta m^2_{32}|$. The standard $chi^2$ method is compared with a proposed Fourier transformation method. In addition, we show that for such a measurement to succeed, one must understand the non-linearity of the detector energy scale at the level of a few tenths of percent.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا