No Arabic abstract
We revisit two longstanding puzzles in supersymmetric gauge theories. The first concerns the question of the holomorphy of the coupling, and related to this the possible definition of an exact (NSVZ) beta function. The second concerns instantons in pure gluodynamics, which appear to give sensible, exact results for certain correlation functions, which nonetheless differ from those obtained using systematic weak coupling expansions. For the first question, we extend an earlier proposal of Arkani-Hamed and Murayama, showing that if their regulated action is written suitably, the holomorphy of the couplings is manifest, and it is easy to determine the renormalization scheme for which the NSVZ formula holds. This scheme, however, is seen to be one of an infinite class of schemes, each leading to an exact beta function; the NSVZ scheme, while simple, is not selected by any compelling physical consideration. For the second question, we explain why the instanton computation in the pure supersymmetric gauge theory is not reliable, even at short distances. The semiclassical expansion about the instanton is purely formal; if infrared divergences appear, they spoil arguments based on holomorphy. We demonstrate that infrared divergences do not occur in the perturbation expansion about the instanton, but explain that there is no reason to think this captures all contributions from the sector with unit topological charge. That one expects additional contributions is illustrated by dilute gas corrections. These are infrared divergent, and so difficult to define, but if non-zero give order one, holomorphic, corrections to the leading result. Exploiting an earlier analysis of Davies et al, we demonstrate that in the theory compactified on a circle of radius beta, due to infrared effects, finite contributions indeed arise which are not visible in the formal limit that beta goes to infinity.
I propose a controlled approximation to QCD-like theories with massless quarks by employing supersymmetric QCD perturbed by anomaly-mediated supersymmetry breaking. They have identical massless particle contents. Thanks to the ultraviolet-insensitivity of anomaly mediation, dynamics can be worked out exactly when $m ll Lambda$, where $m$ is the size of supersymmetry breaking and $Lambda$ the dynamical scale of the gauge theory. I demonstrate that chiral symmetry is dynamically broken for $N_{f} leq frac{3}{2} N_{c}$ while the theories lead to non-trivial infrared fixed points for larger number of flavors. While there may be a phase transition as $m$ is increased beyond $Lambda$, qualitative agreements with expectations in QCD are encouraging and suggest that two limits $m ll Lambda$ and $m gg Lambda$ may be in the same universality class.
We construct an exact analytical solution to the integral equation which is believed to describe logarithmic growth of the anomalous dimensions of high spin operators in planar N=4 super Yang-Mills theory and use it to determine the strong coupling expansion of the cusp anomalous dimension.
We consider the $mathcal{N}=2$ SYM theory with gauge group SU($N$) and a matter content consisting of one multiplet in the symmetric and one in the anti-symmetric representation. This conformal theory admits a large-$N$ t Hooft expansion and is dual to a particular orientifold of $AdS_{5}times S^{5}$. We analyze this gauge theory relying on the matrix model provided by localization a la Pestun. Even though this matrix model has very non-trivial interactions, by exploiting the full Lie algebra approach to the matrix integration, we show that a large class of observables can be expressed in a closed form in terms of an infinite matrix depending on the t Hooft coupling $lambda$. These exact expressions can be used to generate the perturbative expansions at high orders in a very efficient way, and also to study analytically the leading behavior at strong coupling. We successfully compare these predictions to a direct Monte Carlo numerical evaluation of the matrix integral and to the Pade resummations derived from very long perturbative series, that turn out to be extremely stable beyond the convergence disk $|lambda|<pi^2$ of the latter.
At large N, a field theory and its orbifolds (given by projecting out some of its fields) share the same planar graphs. If the parent-orbifold relation continues even nonperturbatively, then properties such as confinement and chiral symmetry breaking will appear in both parent and orbifold. N=1 supersymmetric Yang-Mills has many nonsupersymmetric orbifolds which resemble QCD. A nonperturbative parent-orbifold relation predicts many surprising effects, exactly valid at large N, and expected to suffer only mild 1/N corrections. These include degeneracies among bosonic hadrons and exact predictions for domain wall tensions. Other predictions are valid even when supersymmetry in the parent is broken. Since these theories are QCD-like, simulation is possible, so these predictions may be numerically tested. The method also relates wide classes of nonsupersymmetric theories.
We continue our study of the correlators of a recently discovered family of BPS Wilson loops in N=4 supersymmetric U(N) Yang-Mills theory. We perform explicit computations at weak coupling by means of analytical and numerical methods finding agreement with the exact formula derived from localization. In particular we check the localization prediction at order g^6 for different BPS latitude configurations, the N=4 perturbative expansion reproducing the expected results within a relative error of 10^(-4). On the strong coupling side we present a supergravity evaluation of the 1/8 BPS correlator in the limit of large separation, taking into account the exchange of all relevant modes between the string world-sheets. While reproducing the correct geometrical dependence, we find that the associated coefficient does not match the localization result.