No Arabic abstract
I propose a controlled approximation to QCD-like theories with massless quarks by employing supersymmetric QCD perturbed by anomaly-mediated supersymmetry breaking. They have identical massless particle contents. Thanks to the ultraviolet-insensitivity of anomaly mediation, dynamics can be worked out exactly when $m ll Lambda$, where $m$ is the size of supersymmetry breaking and $Lambda$ the dynamical scale of the gauge theory. I demonstrate that chiral symmetry is dynamically broken for $N_{f} leq frac{3}{2} N_{c}$ while the theories lead to non-trivial infrared fixed points for larger number of flavors. While there may be a phase transition as $m$ is increased beyond $Lambda$, qualitative agreements with expectations in QCD are encouraging and suggest that two limits $m ll Lambda$ and $m gg Lambda$ may be in the same universality class.
We revisit two longstanding puzzles in supersymmetric gauge theories. The first concerns the question of the holomorphy of the coupling, and related to this the possible definition of an exact (NSVZ) beta function. The second concerns instantons in pure gluodynamics, which appear to give sensible, exact results for certain correlation functions, which nonetheless differ from those obtained using systematic weak coupling expansions. For the first question, we extend an earlier proposal of Arkani-Hamed and Murayama, showing that if their regulated action is written suitably, the holomorphy of the couplings is manifest, and it is easy to determine the renormalization scheme for which the NSVZ formula holds. This scheme, however, is seen to be one of an infinite class of schemes, each leading to an exact beta function; the NSVZ scheme, while simple, is not selected by any compelling physical consideration. For the second question, we explain why the instanton computation in the pure supersymmetric gauge theory is not reliable, even at short distances. The semiclassical expansion about the instanton is purely formal; if infrared divergences appear, they spoil arguments based on holomorphy. We demonstrate that infrared divergences do not occur in the perturbation expansion about the instanton, but explain that there is no reason to think this captures all contributions from the sector with unit topological charge. That one expects additional contributions is illustrated by dilute gas corrections. These are infrared divergent, and so difficult to define, but if non-zero give order one, holomorphic, corrections to the leading result. Exploiting an earlier analysis of Davies et al, we demonstrate that in the theory compactified on a circle of radius beta, due to infrared effects, finite contributions indeed arise which are not visible in the formal limit that beta goes to infinity.
We derive exact formulae for the partition function and the expectation values of Wilson/t Hooft loops, thus directly checking their S-duality transformations. We focus on a special class of N=2 gauge theories on S^4 with fundamental matter. In particular we show that, for a specific choice of the masses, the matrix model integral defining the gauge theory partition function localizes around a finite set of critical points where it can be explicitly evaluated and written in terms of generalized hypergeometric functions. From the AGT perspective the gauge theory partition function, evaluated with this choice of masses, is viewed as a four point correlator involving the insertion of a degenerated field. The well known simplicity of the degenerated correlator reflects the fact that for these choices of masses only a very restrictive type of instanton configurations contributes to the gauge theory partition function.
We study dynanics of $SU(N-4)$ gauge theories with fermions in rank-2 symmetric tensor and $N$ anti-fundamental representations, by perturbing supersymmetric theories with anomaly-mediated supersymmetry breaking. We find the $SU(N)times U(1)$ global symmetry is dynamically broken to $SO(N)$ for $Ngeq 17$, a different result from conjectures in the literature. For $N<17$, theories flow to infrared fixed points.
Results of hadron spectroscopy with two dynamical mass-degenerate chirally improved quarks are presented. Three ensembles with pion masses of 322(5), 470(4) and 525(7) MeV, lattices of size 16^3 times 32, and lattice spacings close to 0.15 fm are investigated. We discuss the possible appearance of scattering states, considering masses and eigenvectors. Partially quenched results in the scalar channel suggest the presence of a 2-particle state, however, in most channels we cannot identify them. Where available, we compare to results from quenched simulations using the same action.
We present analytical results for the Euclidean 2-point correlator of the flavor-singlet vector current evolved by the gradient flow at next-to-leading order ($O(g^2)$) in perturbatively massless QCD-like theories. We show that the evolved 2-point correlator requires multiplicative renormalization, in contrast to the nonevolved case, and confirm, in agreement with other results in the literature, that such renormalization ought to be identified with a universal renormalization of the evolved elementary fermion field in all evolved fermion-bilinear currents, whereas the gauge coupling renormalizes as usual. We explicitly derive the asymptotic solution of the Callan-Symanzik equation for the connected 2-point correlators of these evolved currents in the limit of small gradient-flow time $sqrt{t}$, at fixed separation $|x-y|$. Incidentally, this computation determines the leading coefficient of the operator-product expansion (OPE) in the small $t$ limit for the evolved currents in terms of their local nonevolved counterpart. Our computation also implies that, in the evolved case, conservation of the vector current, hence transversality of the corresponding 2-point correlator, is no longer related to the nonrenormalization, in contrast to the nonevolved case. Indeed, for small flow time the evolved vector current is conserved up to $O(t)$ softly violating effects, despite its $t$-dependent nonvanishing anomalous dimension.