Do you want to publish a course? Click here

Determination of total x-ray absorption coefficient using non-resonant x-ray emission

455   0   0.0 ( 0 )
 Added by Andrew Achkar
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

An alternative measure of x-ray absorption spectroscopy (XAS) called inverse partial fluorescence yield (IPFY) has recently been developed that is both bulk sensitive and free of saturation effects. Here we show that the angle dependence of IPFY can provide a measure directly proportional to the total x-ray absorption coefficient, $mu(E)$. In contrast, fluorescence yield (FY) and electron yield (EY) spectra are offset and/or distorted from $mu(E)$ by an unknown and difficult to measure amount. Moreover, our measurement can determine $mu(E)$ in absolute units with no free parameters by scaling to $mu(E)$ at the non-resonant emission energy. We demonstrate this technique with measurements on NiO and NdGaO$_3$. Determining $mu(E)$ across edge-steps enables the use of XAS as a non-destructive measure of material composition. In NdGaO$_3$, we also demonstrate the utility of IPFY for insulating samples, where neither EY or FY provide reliable spectra due to sample charging and self-absorption effects, respectively.



rate research

Read More

219 - J. Koo , C. Song , S. Ji 2007
Comprehensive x-ray scattering studies, including resonant scattering at Mn L-edge, Tb L- and M-edges, were performed on single crystals of TbMn2O5. X-ray intensities were observed at a forbidden Bragg position in the ferroelectric phases, in addition to the lattice and the magnetic modulation peaks. Temperature dependences of their intensities and the relation between the modulation wave vectors provide direct evidences of exchange striction induced ferroelectricity. Resonant x-ray scattering results demonstrate the presence of multiple magnetic orders by exhibiting their different temperature dependences. The commensurate-to-incommensurate phase transition around 24 K is attributed to discommensuration through phase slipping of the magnetic orders in spin frustrated geometries. We proposed that the low temperature incommensurate phase consists of the commensurate magnetic domains separated by anti-phase domain walls which reduce spontaneous polarizations abruptly at the transition.
GdNi is a ferrimagnetic material with a Curie temperature Tc = 69 K which exhibits a large magnetocaloric effect, making it useful for magnetic refrigerator applications. We investigate the electronic structure of GdNi by carrying out x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) at T = 25 K in the ferrimagnetic phase. We analyze the Gd M$_{4,5}$-edge ($3d$ - $4f$) and Ni L$_{2,3}$-edge ($2p$ - $3d$) spectra using atomic multiplet and cluster model calculations, respectively. The atomic multiplet calculation for Gd M$_{4,5}$-edge XAS indicates that Gd is trivalent in GdNi, consistent with localized $4f$ states. On the other hand, a model cluster calculation for Ni L$_{2,3}$-edge XAS shows that Ni is effectively divalent in GdNi and strongly hybridized with nearest neighbour Gd states, resulting in a $d$-electron count of 8.57. The Gd M$_{4,5}$-edge XMCD spectrum is consistent with a ground state configuration of S = 7/2 and L=0. The Ni L$_{2,3}$-edge XMCD results indicate that the antiferromagnetically aligned Ni moments exhibit a small but finite magnetic moment ( $m_{tot}$ $sim$ 0.12 $mu_B$ ) with the ratio $m_{o}/m_{s}$ $sim$ 0.11. Valence band hard x-ray photoemission spectroscopy shows Ni $3d$ features at the Fermi level, confirming a partially filled $3d$ band, while the Gd $4f$ states are at high binding energies away from the Fermi level. The results indicate that the Ni $3d$ band is not fully occupied and contradicts the charge-transfer model for rare-earth based alloys. The obtained electronic parameters indicate that GdNi is a strongly correlated charge transfer metal with the Ni on-site Coulomb energy being much larger than the effective charge-transfer energy between the Ni $3d$ and Gd $4f$ states.
The control and detection of crystallographic chirality is an important and challenging scientific problem. Chirality has wide ranging implications from medical physics to cosmology including an intimate but subtle connection in magnetic systems, for example Mn$_{1-x}$Fe$_{x}$Si. X-ray diffraction techniques with resonant or polarized variations of the experimental setup are currently utilized to characterize lattice chirality. We demonstrate using theoretical calculations the feasibility of indirect $K$ -edge bimagnon resonant inelastic X-ray scattering (RIXS) spectrum as a viable experimental technique to distinguish crystallographic handedness. We apply spin wave theory to the recently discovered $sqrt {5}timessqrt {5}$ vacancy ordered chalcogenide Rb$_{0.89}$Fe$_{1.58}$Se$_{2}$ for realistic X-ray experimental set up parameters (incoming energy, polarization, and Bragg angle) to show that the computed RIXS spectrum is sensitive to the underlying handedness (right or left) of the lattice. A Flack parameter definition that incorporates the right- and left- chiral lattice RIXS response is introduced. It is shown that the RIXS response of the multiband magnon system RbFeSe arises both from inter- and intra- band scattering processes. The extinction or survival of these RIXS peaks are sensitive to the underlying chiral lattice orientation. This in turn allows for the identification of the two chiral lattice orientations.
We demonstrate a new method of x-ray absorption spectroscopy (XAS) that is bulk sensitive, like traditional fluorescence yield measurements, but is not affected by self-absorption or saturation effects. This measure of XAS is achieved by scanning the incident photon energy through an absorption edge and using an energy sensitive photon detector to measure the partial fluorescence yield (PFY). The x-ray emission from any element or core-hole excitation that is not resonant with the absorption edge under investigation is selected from the PFY. It is found that the inverse of this PFY spectrum, which we term inverse partial fluorescence yield (IPFY), is linearly proportional to the x-ray absorption cross-section without any corrections due to saturation or self-absorption effects. We demonstrate this technique on the Cu L and Nd M absorption edges of the high-Tc cuprate LNSCO by measuring the O K PFY and comparing the total electron yield, total fluorescence yield and IPFY spectra.
Multiferroic TbMnO3 is investigated using x-ray diffraction in high magnetic fields. Measurements on first and second harmonic structural reflections due to modulations induced by the Mn and Tb magnetic order are presented as function of temperature and field oriented along the a and b-directions of the crystal. The relation to changes in ordering of the rare earth moments in applied field is discussed. Observations below T_N(Tb) without and with applied magnetic field point to a strong interaction of the rare earth order, the Mn moments and the lattice. Also, the incommensurate to commensurate transition of the wave vector at the critical fields is discussed with respect to the Tb and Mn magnetic order and a phase diagram on basis of these observations for magnetic fields H||a and H||b is presented. The observations point to a complicated and delicate magneto-elastic interaction as function of temperature and field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا