Do you want to publish a course? Click here

Bulk sensitive x-ray absorption spectroscopy free of self-absorption effects

169   0   0.0 ( 0 )
 Added by Andrew Achkar
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate a new method of x-ray absorption spectroscopy (XAS) that is bulk sensitive, like traditional fluorescence yield measurements, but is not affected by self-absorption or saturation effects. This measure of XAS is achieved by scanning the incident photon energy through an absorption edge and using an energy sensitive photon detector to measure the partial fluorescence yield (PFY). The x-ray emission from any element or core-hole excitation that is not resonant with the absorption edge under investigation is selected from the PFY. It is found that the inverse of this PFY spectrum, which we term inverse partial fluorescence yield (IPFY), is linearly proportional to the x-ray absorption cross-section without any corrections due to saturation or self-absorption effects. We demonstrate this technique on the Cu L and Nd M absorption edges of the high-Tc cuprate LNSCO by measuring the O K PFY and comparing the total electron yield, total fluorescence yield and IPFY spectra.



rate research

Read More

The electronic structure of LiNiO$_2$, a promising Li-ion battery cathode material, has remained a challenge to understand due to its highly covalent yet correlated nature. Here we elucidate the electronic structure in LiNiO$_2$ and the related compound NaNiO$_2$ using x-ray absorption spectra (XAS) and quantum many-body calculations. Notably, we use inverse partial fluorescence yield to correctly measure the Ni $L$-edge XAS, which is inaccurate using conventional methods. We show that the XAS are indicative of a strong Jahn-Teller effect in NaNiO$_2$ and a bond disproportionated state in LiNiO$_2$, supporting a theory of a high-entropy, glassy disproportionated state that stabilizes charging cycles in LiNiO$_2$.
X-ray Absorption Spectroscopy (XAS) is a widely used X-ray diagnostic method. While synchrotrons have large communities of XAS users, its use on X-Ray Free Electron Lasers (XFEL) facilities has been rather limited. At a first glance, the relatively narrow bandwidth and the highly fluctuating spectral structure of XFEL sources seem to prevent high-quality XAS measurements without accumulating over many shots. Here, we demonstrate for the first time the collection of single-shot XAS spectra on an XFEL, with error bars of only a few percent, over tens of eV. We show how this technique can be extended over wider spectral ranges towards Extended X-ray Absorption Fine Structure (EXAFS) measurements, by concatenating a few tens of single-shot measurements. Such results open indisputable perspectives for future femtosecond time resolved XAS studies, especially for transient processes that can be initiated at low repetition rate.
We present an x-ray absorption study of the dependence of the V oxidation state on the thickness of LaVO$_3$ (LVO) and capping LaAlO$_3$ (LAO) layers in the multilayer structure of LVO sandwiched between LAO. We found that the change of the valence of V as a function of LAO layer thickness can be qualitatively explained by a transition between electronically reconstructed interfaces and a chemical reconstruction. The change as a function of LVO layer thickness is complicated by the presence of a considerable amount of V$^{4+}$ in the bulk of the thicker LVO layers.
GdNi is a ferrimagnetic material with a Curie temperature Tc = 69 K which exhibits a large magnetocaloric effect, making it useful for magnetic refrigerator applications. We investigate the electronic structure of GdNi by carrying out x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) at T = 25 K in the ferrimagnetic phase. We analyze the Gd M$_{4,5}$-edge ($3d$ - $4f$) and Ni L$_{2,3}$-edge ($2p$ - $3d$) spectra using atomic multiplet and cluster model calculations, respectively. The atomic multiplet calculation for Gd M$_{4,5}$-edge XAS indicates that Gd is trivalent in GdNi, consistent with localized $4f$ states. On the other hand, a model cluster calculation for Ni L$_{2,3}$-edge XAS shows that Ni is effectively divalent in GdNi and strongly hybridized with nearest neighbour Gd states, resulting in a $d$-electron count of 8.57. The Gd M$_{4,5}$-edge XMCD spectrum is consistent with a ground state configuration of S = 7/2 and L=0. The Ni L$_{2,3}$-edge XMCD results indicate that the antiferromagnetically aligned Ni moments exhibit a small but finite magnetic moment ( $m_{tot}$ $sim$ 0.12 $mu_B$ ) with the ratio $m_{o}/m_{s}$ $sim$ 0.11. Valence band hard x-ray photoemission spectroscopy shows Ni $3d$ features at the Fermi level, confirming a partially filled $3d$ band, while the Gd $4f$ states are at high binding energies away from the Fermi level. The results indicate that the Ni $3d$ band is not fully occupied and contradicts the charge-transfer model for rare-earth based alloys. The obtained electronic parameters indicate that GdNi is a strongly correlated charge transfer metal with the Ni on-site Coulomb energy being much larger than the effective charge-transfer energy between the Ni $3d$ and Gd $4f$ states.
An alternative measure of x-ray absorption spectroscopy (XAS) called inverse partial fluorescence yield (IPFY) has recently been developed that is both bulk sensitive and free of saturation effects. Here we show that the angle dependence of IPFY can provide a measure directly proportional to the total x-ray absorption coefficient, $mu(E)$. In contrast, fluorescence yield (FY) and electron yield (EY) spectra are offset and/or distorted from $mu(E)$ by an unknown and difficult to measure amount. Moreover, our measurement can determine $mu(E)$ in absolute units with no free parameters by scaling to $mu(E)$ at the non-resonant emission energy. We demonstrate this technique with measurements on NiO and NdGaO$_3$. Determining $mu(E)$ across edge-steps enables the use of XAS as a non-destructive measure of material composition. In NdGaO$_3$, we also demonstrate the utility of IPFY for insulating samples, where neither EY or FY provide reliable spectra due to sample charging and self-absorption effects, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا