Do you want to publish a course? Click here

Quantum phase transition between cluster and antiferromagnetic states

155   0   0.0 ( 0 )
 Added by Luigi Amico
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a Hamiltonian system describing a three spin-1/2 cluster-like interaction competing with an Ising-like exchange. We show that the ground state in the cluster phase possesses symmetry protected topological order. A continuous quantum phase transition occurs as result of the competition between the cluster and Ising terms. At the critical point the Hamiltonian is self-dual. The geometric entanglement is also studied. Our findings in one dimension corroborate the analysis of the two dimensional generalization of the system, indicating, at a mean field level, the presence of a direct transition between an antiferromagnetic and a valence bond solid ground state.



rate research

Read More

The quench dynamics of many-body quantum systems may exhibit non-analyticities in the Loschmidt echo, a phenomenon known as dynamical phase transition (DPT). Despite considerable research into the underlying mechanisms behind this phenomenon, several open questions still remain. Motivated by this, we put forth a detailed study of DPTs from the perspective of quantum phase space and entropy production, a key concept in thermodynamics. We focus on the Lipkin-Meshkov-Glick model and use spin coherent states to construct the corresponding Husimi-$Q$ quasi-probability distribution. The entropy of the $Q$-function, known as Wehrl entropy, provides a measure of the coarse-grained dynamics of the system and, therefore, evolves non-trivially even for closed systems. We show that critical quenches lead to a quasi-monotonic growth of the Wehrl entropy in time, combined with small oscillations. The former reflects the information scrambling characteristic of these transitions and serves as a measure of entropy production. On the other hand, the small oscillations imply negative entropy production rates and, therefore, signal the recurrences of the Loschmidt echo. Finally, we also study a Gaussification of the model based on a modified Holstein-Primakoff approximation. This allows us to identify the relative contribution of the low energy sector to the emergence of DPTs. The results presented in this article are relevant not only from the dynamical quantum phase transition perspective, but also for the field of quantum thermodynamics, since they point out that the Wehrl entropy can be used as a viable measure of entropy production.
We analyze a $XXZ$ spin-1/2 chain which is driven dissipatively at its boundaries. The dissipative driving is modelled by Lindblad jump operators which only act on both boundary spins. In the limit of large dissipation, we find that the boundary spins are pinned to a certain value and at special values of the interaction anisotropy, the steady states are formed by a rank-2 mixture of helical states with opposite winding numbers. Contrarily to previous stabilization of topological states, these helical states are not protected by a gap in the spectrum of the Lindbladian. By changing the anisotropy, the transition between these steady states takes place via mixed states of higher rank. In particular, crossing the value of zero anisotropy a totally mixed state is found as the steady state. The transition between the different winding numbers via mixed states can be seen in the light of the transitions between different topological states in dissipatively driven systems. The results are obtained developing a perturbation theory in the inverse dissipative coupling strength and using the numerical exact diagonalization and matrix product state methods.
We propose a method, based on matrix product states, for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement. Both the frequency and the strength of generalized measurements can be varied within our scheme, thus allowing us to explore the corresponding two-dimensional phase diagram. The method is applied to one-dimensional chains of nearest-neighbor interacting hard-core bosons. A transition from an entangling to a disentangling (area-law) phase is found. However, by resolving time-dependent density correlations in the monitored system, we find important differences between different regions at the phase boundary. In particular, we observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
321 - J. Zhang , G. Pagano , P. W. Hess 2017
A quantum simulator is a restricted class of quantum computer that controls the interactions between quantum bits in a way that can be mapped to certain difficult quantum many-body problems. As more control is exerted over larger numbers of qubits, the simulator can tackle a wider range of problems, with the ultimate limit being a universal quantum computer that can solve general classes of hard problems. We use a quantum simulator composed of up to 53 qubits to study a non-equilibrium phase transition in the transverse field Ising model of magnetism, in a regime where conventional statistical mechanics does not apply. The qubits are represented by trapped ion spins that can be prepared in a variety of initial pure states. We apply a global long-range Ising interaction with controllable strength and range, and measure each individual qubit with near 99% efficiency. This allows the single-shot measurement of arbitrary many-body correlations for the direct probing of the dynamical phase transition and the uncovering of computationally intractable features that rely on the long-range interactions and high connectivity between the qubits.
We study the quantum fidelity approach to characterize thermal phase transitions. Specifically, we focus on the mixed-state fidelity induced by a perturbation in temperature. We consider the behavior of fidelity in two types of second-order thermal phase transitions (based on the type of non-analiticity of free energy), and we find that usual fidelity criteria for identifying critical points is more applicable to the case of $lambda$ transitions (divergent second derivatives of free energy). Our study also reveals limitations of the fidelity approach: sensitivity to high temperature thermal fluctuations that wash out information about the transition, and inability of fidelity to distinguish between crossovers and proper phase transitions. In spite of these limitations, however, we find that fidelity remains a good pre-criterion for testing thermal phase transitions, which we use to analyze the non-zero temperature phase diagram of the Lipkin-Meshkov-Glick model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا