No Arabic abstract
We propose a method, based on matrix product states, for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement. Both the frequency and the strength of generalized measurements can be varied within our scheme, thus allowing us to explore the corresponding two-dimensional phase diagram. The method is applied to one-dimensional chains of nearest-neighbor interacting hard-core bosons. A transition from an entangling to a disentangling (area-law) phase is found. However, by resolving time-dependent density correlations in the monitored system, we find important differences between different regions at the phase boundary. In particular, we observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
We study thermal states of strongly interacting quantum spin chains and prove that those can be represented in terms of convex combinations of matrix product states. Apart from revealing new features of the entanglement structure of Gibbs states our results provide a theoretical justification for the use of Whites algorithm of minimally entangled typical thermal states. Furthermore, we shed new light on time dependent matrix product state algorithms which yield hydrodynamical descriptions of the underlying dynamics.
The theory of entanglement provides a fundamentally new language for describing interactions and correlations in many body systems. Its vocabulary consists of qubits and entangled pairs, and the syntax is provided by tensor networks. We review how matrix product states and projected entangled pair states describe many-body wavefunctions in terms of local tensors. These tensors express how the entanglement is routed, act as a novel type of non-local order parameter, and we describe how their symmetries are reflections of the global entanglement patterns in the full system. We will discuss how tensor networks enable the construction of real-space renormalization group flows and fixed points, and examine the entanglement structure of states exhibiting topological quantum order. Finally, we provide a summary of the mathematical results of matrix product states and projected entangled pair states, highlighting the fundamental theorem of matrix product vectors and its applications.
In one-dimensional quantum systems with short-range interactions, a set of leading numerical methods is based on matrix product states, whose bond dimension determines the amount of computational resources required by these methods. We prove that a thermal state at constant inverse temperature $beta$ has a matrix product representation with bond dimension $e^{tilde O(sqrt{betalog(1/epsilon)})}$ such that all local properties are approximated to accuracy $epsilon$. This justifies the common practice of using a constant bond dimension in the numerical simulation of thermal properties.
We provide an analytical tripartite-study from the generalized $R$-matrix. It provides the upper bound of the maximum violation of Mermins inequality. For a generic 2-qubit pure state, the concurrence or $R$-matrix characterizes the maximum violation of Bells inequality. Therefore, people expect that the maximum violation should be proper to quantify Quantum Entanglement. The $R$-matrix gives the maximum violation of Bells inequality. For a general 3-qubit state, we have five invariant entanglement quantities up to local unitary transformations. We show that the five invariant quantities describe the correlation in the generalized $R$-matrix. The violation of Mermins inequality is not a proper diagnosis due to the non-monotonic behavior. We then classify 3-qubit quantum states. Each classification quantifies Quantum Entanglement by the total concurrence. In the end, we relate the experiment correlators to Quantum Entanglement.
We compare accuracy of two prime time evolution algorithms involving Matrix Product States - tDMRG (time-dependent density matrix renormalization group) and TDVP (time-dependent variational principle). The latter is supposed to be superior within a limited and fixed auxiliary space dimension. Surprisingly, we find that the performance of algorithms depends on the model considered. In particular, many-body localized systems as well as the crossover regions between localized and delocalized phases are better described by tDMRG, contrary to the delocalized regime where TDVP indeed outperforms tDMRG in terms of accuracy and reliability. As an example, we study many-body localization transition in a large size Heisenberg chain. We discuss drawbacks of previous estimates [Phys. Rev. B 98, 174202 (2018)] of the critical disorder strength for large systems.