No Arabic abstract
A quantum simulator is a restricted class of quantum computer that controls the interactions between quantum bits in a way that can be mapped to certain difficult quantum many-body problems. As more control is exerted over larger numbers of qubits, the simulator can tackle a wider range of problems, with the ultimate limit being a universal quantum computer that can solve general classes of hard problems. We use a quantum simulator composed of up to 53 qubits to study a non-equilibrium phase transition in the transverse field Ising model of magnetism, in a regime where conventional statistical mechanics does not apply. The qubits are represented by trapped ion spins that can be prepared in a variety of initial pure states. We apply a global long-range Ising interaction with controllable strength and range, and measure each individual qubit with near 99% efficiency. This allows the single-shot measurement of arbitrary many-body correlations for the direct probing of the dynamical phase transition and the uncovering of computationally intractable features that rely on the long-range interactions and high connectivity between the qubits.
Dynamical quantum phase transitions (DQPTs) extend the concept of phase transitions and thus universality to the non-equilibrium regime. In this letter, we investigate DQPTs in a string of ions simulating interacting transverse-field Ising models. We observe non-equilibrium dynamics induced by a quantum quench and show for strings of up to 10 ions the direct detection of DQPTs by measuring a quantity that becomes non-analytic in time in the thermodynamic limit. Moreover, we provide a link between DQPTs and the dynamics of other relevant quantities such as the magnetization, and we establish a connection between DQPTs and entanglement production.
Non-equilibrium quantum many-body systems, which are difficult to study via classical computation, have attracted wide interest. Quantum simulation can provide insights into these problems. Here, using a programmable quantum simulator with 16 all-to-all connected superconducting qubits, we investigate the dynamical phase transition in the Lipkin-Meshkov-Glick model with a quenched transverse field. Clear signatures of the dynamical phase transition, merging different concepts of dynamical criticality, are observed by measuring the non-equilibrium order parameter, nonlocal correlations, and the Loschmidt echo. Moreover, near the dynamical critical point, we obtain the optimal spin squeezing of $-7.0pm 0.8$ decibels, showing multipartite entanglement useful for measurements with precision five-fold beyond the standard quantum limit. Based on the capability of entangling qubits simultaneously and the accurate single-shot readout of multi-qubit states, this superconducting quantum simulator can be used to study other problems in non-equilibrium quantum many-body systems.
The discrete time crystal (DTC) is a recently discovered phase of matter that spontaneously breaks time-translation symmetry. Disorder-induced many-body-localization is required to stabilize a DTC to arbitrary times, yet an experimental investigation of this localized regime has proven elusive. Here, we observe the hallmark signatures of a many-body-localized DTC using a novel quantum simulation platform based on individually controllable $^{13}$C nuclear spins in diamond. We demonstrate the characteristic long-lived spatiotemporal order and confirm that it is robust for generic initial states. Our results are consistent with the realization of an out-of-equilibrium Floquet phase of matter and establish a programmable quantum simulator based on solid-state spins for exploring many-body physics.
Anyons are exotic quasiparticles living in two dimensions that do not fit into the usual categories of fermions and bosons, but obey a new form of fractional statistics. Following a recent proposal [Phys. Rev. Lett. 98, 150404 (2007)], we present an experimental demonstration of the fractional statistics of anyons in the Kitaev spin lattice model using a photonic quantum simulator. We dynamically create the ground state and excited states (which are six-qubit graph states) of the Kitaev model Hamiltonian, and implement the anyonic braiding and fusion operations by single-qubit rotations. A phase shift of $pi$ related to the anyon braiding is observed, confirming the prediction of the fractional statistics of Abelian 1/2-anyons.
The quench dynamics of many-body quantum systems may exhibit non-analyticities in the Loschmidt echo, a phenomenon known as dynamical phase transition (DPT). Despite considerable research into the underlying mechanisms behind this phenomenon, several open questions still remain. Motivated by this, we put forth a detailed study of DPTs from the perspective of quantum phase space and entropy production, a key concept in thermodynamics. We focus on the Lipkin-Meshkov-Glick model and use spin coherent states to construct the corresponding Husimi-$Q$ quasi-probability distribution. The entropy of the $Q$-function, known as Wehrl entropy, provides a measure of the coarse-grained dynamics of the system and, therefore, evolves non-trivially even for closed systems. We show that critical quenches lead to a quasi-monotonic growth of the Wehrl entropy in time, combined with small oscillations. The former reflects the information scrambling characteristic of these transitions and serves as a measure of entropy production. On the other hand, the small oscillations imply negative entropy production rates and, therefore, signal the recurrences of the Loschmidt echo. Finally, we also study a Gaussification of the model based on a modified Holstein-Primakoff approximation. This allows us to identify the relative contribution of the low energy sector to the emergence of DPTs. The results presented in this article are relevant not only from the dynamical quantum phase transition perspective, but also for the field of quantum thermodynamics, since they point out that the Wehrl entropy can be used as a viable measure of entropy production.