No Arabic abstract
The effective spin exchange coupling between impurities (adatoms) on graphene mediated by conduction electrons is studied as a function of the strength of the potential part of the on-site energy $U$ of the electron-adatom interaction. With increasing $U$, the exchange coupling becomes long-range, determined largely by the impurity levels with energies close to the Dirac points. When adatoms reside on opposite sublattices, their exchange coupling, normally antiferromagnetic, becomes ferromagnetic and resonantly enhanced at a specific distance where an impurity level crosses the Dirac point.
The effective interaction between resonant magnetic Anderson impurities in graphene, mediated by conduction electrons, is studied as a function of the strength of the onsite energy level of the impurities and the amplitude of coupling to conduction electrons. The sign and character of the interaction depend on whether the impurities reside on the same or opposite sublattices. For the same (opposite) sublattice, the potential interaction is attractive (repulsive) in the weak coupling limit with $1/R^3$ dependence on the distance; the interaction reverses sign and becomes repulsive (attractive) in the strong coupling limit and displays $1/R$ behavior. The spin-exchange coupling is ferromagnetic (antiferromagnetic) at both large and small distances, but reverses sign and becomes anti-ferromagnetic (ferromagnetic) for intermediate distances. For opposite sublattices, the effective spin exchange coupling is resonantly enhanced at distances where the energy levels cross the Dirac points.
Graphene has been identified as a promising material with numerous applications, particularly in spintronics. In this paper we investigate the peculiar features of spin excitations of magnetic units deposited on graphene nanoribbons and how they can couple through a dynamical interaction mediated by spin currents. We examine in detail the spin lifetimes and identify a pattern caused by vanishing density of states sites in pristine ribbons with armchair borders. Impurities located on these sites become practically invisible to the interaction, but can be made accessible by a gate voltage or doping. We also demonstrate that the coupling between impurities can be turned on or off using this characteristic, which may be used to control the transfer of information in transistor-like devices.
Using first-principles calculations we demonstrate sizable exchange coupling between a magnetic molecule and a magnetic substrate via a graphene layer. As a model system we consider cobaltocene (CoCp$_2$) adsorbed on graphene deposited on Ni(111). We find that the magnetic coupling between the molecule and the substrate is antiferromagnetic and varies considerably depending on the molecule structure, the adsorption geometry, and the stacking of graphene on Ni(111). We show how this coupling can be tuned by intercalating a magnetic monolayer, e.g. Fe or Co, between graphene and Ni(111). We identify the leading mechanism responsible for the coupling to be the spatial and energy matching of the frontier orbitals of CoCp$_2$ and graphene close to the Fermi level, and we demonstrate the role of graphene as an electronic decoupling layer, yet allowing spin communication between molecule and substrate.
We present first principles calculations of the exchange interactions between magnetic impurities deposited on (001), (110) and (111) surfaces of Cu and Au and analyze them, in particular, in the asymptotic regime. For the (110) and the (111) surfaces we demonstrate that the interaction shows an oscillatory behavior as a function of the distance, R, of the impurities and that the amplitude of the oscillations decays as 1/R^2. Furthermore, the frequency of the oscillations is closely related to the length of the Fermi vector of the surface states existing on these surfaces. Due to the asymmetry of the the surface states dispersion, the frequency of the oscillations becomes also asymmetric on the (110) surfaces, while on the Au(111) surface two distinct frequencies are found in the oscillations as a consequence of the Bychkov-Rashba splitting of the surface states. Remarkably, no long range oscillations of the exchange interaction are observed for the (001) surfaces where the surface states are unoccupied. When burying the impurities beneath the surface layer, oscillations mediated by the bulk states become visible.
Van der Waals heterostructures display a rich variety of unique electronic properties. To identify novel transport mechanisms, nonlocal measurements have been widely used, wherein a voltage is measured at contacts placed far away from the expected classical flow of charge carriers. This approach was employed in search of dissipationless spin and valley transport, topological charge-neutral currents, hydrodynamic flows and helical edge modes. Monolayer, bilayer, and few-layer graphene, transition-metal dichalcogenides, and moire superlattices were found to display pronounced nonlocal effects. However, the origin of these effects is hotly debated. Graphene, in particular, exhibits giant nonlocality at charge neutrality, a prominent behavior that attracted competing explanations. Utilizing superconducting quantum interference device on a tip (SQUID-on-tip) for nanoscale thermal and scanning gate imaging, we demonstrate that the commonly-occurring charge accumulation at graphene edges leads to giant nonlocality, producing narrow conductive channels that support long-range currents. Unexpectedly, while the edge conductance has little impact on the current flow in zero magnetic field, it leads to field-induced decoupling between edge and bulk transport at moderate fields. The resulting giant nonlocality both at charge neutrality and away from it produces exotic flow patterns in which charges can flow against the global electric field. We have visualized surprisingly intricate patterns of nonlocal currents, which are sensitive to edge disorder. The observed one-dimensional edge transport, being generic and nontopological, is expected to support nonlocal transport in many electronic systems, offering insight into numerous controversies in the literature and linking them to long-range guided electronic states at system edges.