We derive the equations of second order dissipative fluid dynamics from the relativistic Boltzmann equation following the method of W. Israel and J. M. Stewart. We present a frame independent calculation of all first- and second-order terms and their coefficients using a linearised collision integral. Therefore, we restore all terms that were previously neglected in the original papers of W. Israel and J. M. Stewart.
We present the results of deriving the Israel-Stewart equations of relativistic dissipative fluid dynamics from kinetic theory via Grads 14-moment expansion. Working consistently to second order in the Knudsen number, these equations contain several new terms which are absent in previous treatments.
Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, called anisotropic dissipative fluid dynamics, in terms of an expansion around a single-particle distribution function, $hat{f}_{0bf k}$, which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. We construct such an expansion in terms of polynomials in energy and momentum in the direction of the anisotropy and of irreducible tensors in the two-dimensional momentum subspace orthogonal to both the fluid velocity and the direction of the anisotropy. From the Boltzmann equation we then derive the set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from $hat{f}_{0bf k}$. Truncating this set via the 14-moment approximation, we obtain the equations of motion of anisotropic dissipative fluid dynamics.
We use a macroscopic description of a system of relativistic particles based on adding a nonequilibrium tensor to the usual hydrodynamic variables. The nonequilibrium tensor is linked to relativistic kinetic theory through a nonlinear closure suggested by the Entropy Production Principle; the evolution equation is obtained by the method of moments, and together with energy-momentum conservation closes the system. Transport coefficients are chosen to reproduce second order fluid dynamics if gradients are small. We compare the resulting formalism to exact solutions of Boltzmanns equation in 0+1 dimensions and show that it tracks kinetic theory better than second order fluid dynamics.
We re-derive the equations of motion of dissipative relativistic fluid dynamics from kinetic theory. In contrast to the derivation of Israel and Stewart, which considered the second moment of the Boltzmann equation to obtain equations of motion for the dissipative currents, we directly use the latters definition. Although the equations of motion obtained via the two approaches are formally identical, the coefficients are different. We show that, for the one-dimensional scaling expansion, our method is in better agreement with the solution obtained from the Boltzmann equation.
We derive the equations of motion of relativistic, resistive, second-order dissipative magnetohydrodynamics from the Boltzmann-Vlasov equation using the method of moments. We thus extend our previous work [Phys. Rev. D 98, 076009 (2018)], where we only considered the non-resistive limit, to the case of finite electric conductivity. This requires keeping terms proportional to the electric field $E^mu$ in the equations of motions and leads to new transport coefficients due to the coupling of the electric field to dissipative quantities. We also show that the Navier-Stokes limit of the charge-diffusion current corresponds to Ohms law, while the coefficients of electrical conductivity and charge diffusion are related by a type of Wiedemann-Franz law.