We use a macroscopic description of a system of relativistic particles based on adding a nonequilibrium tensor to the usual hydrodynamic variables. The nonequilibrium tensor is linked to relativistic kinetic theory through a nonlinear closure suggested by the Entropy Production Principle; the evolution equation is obtained by the method of moments, and together with energy-momentum conservation closes the system. Transport coefficients are chosen to reproduce second order fluid dynamics if gradients are small. We compare the resulting formalism to exact solutions of Boltzmanns equation in 0+1 dimensions and show that it tracks kinetic theory better than second order fluid dynamics.
Here we derive the relativistic resistive dissipative second-order magnetohydrodynamic evolution equations using the Boltzmann equation, thus extending our work from the previous paper href{https://link.springer.com/article/10.1007/JHEP03(2021)216}{JHEP 03 (2021) 216} where we considered the non-resistive limit. We solve the Boltzmann equation for a system of particles and antiparticles using the relaxation time approximation and the Chapman-Enskog like gradient expansion for the off-equilibrium distribution function, truncating beyond second-order. In the first order, the bulk and shear stress are independent of the electromagnetic field, however, the diffusion current, shows a dependence on the electric field. In the first order, the transport coefficients~(shear and bulk stress) are shown to be independent of the electromagnetic field. The diffusion current, however, shows a dependence on the electric field. In the second-order, the new transport coefficients that couple electromagnetic field with the dissipative quantities appear, which are different from those obtained in the 14-moment approximation~cite{Denicol:2019iyh} in the presence of the electromagnetic field. Also we found out the various components of conductivity in this case.
We derive the equations of second order dissipative fluid dynamics from the relativistic Boltzmann equation following the method of W. Israel and J. M. Stewart. We present a frame independent calculation of all first- and second-order terms and their coefficients using a linearised collision integral. Therefore, we restore all terms that were previously neglected in the original papers of W. Israel and J. M. Stewart.
We derive the relativistic non-resistive, viscous second-order magnetohydrodynamic equations for the dissipative quantities using the relaxation time approximation. The Boltzmann equation is solved for a system of particles and antiparticles using Chapman-Enskog like gradient expansion of the single-particle distribution function truncated at second order. In the first order, the transport coefficients are independent of the magnetic field. In the second-order, new transport coefficients that couple magnetic field and the dissipative quantities appear which are different from those obtained in the 14-moment approximation cite{Denicol:2018rbw} in the presence of a magnetic field. However, in the limit of the weak magnetic field, the form of these equations are identical to the 14-moment approximation albeit with a different values of these coefficients. We also derive the anisotropic transport coefficients in the Navier-Stokes limit.
We present an analytical derivation of the transport coefficients of a relativistic gas in (2+1) dimensions for both Chapman-Enskog (CE) asymptotics and Grads expansion methods. Moreover, we develop a systematic calibration method, connecting the relaxation time of relativistic kinetic theory to the transport parameters of the associated dissipative hydrodynamic equations. Comparison between the analytical results and numerical simulations, shows that the CE method correctly captures dissipative effects, while Grads method does not. The resulting calibration procedure based on the CE method opens the way to the quantitative kinetic description of dissipative relativistic fluid dynamics under fairly general conditions, namely flows with strongly non-linearities, in non-ideal geometries, across both ultra-relativistic and near-non-relativistic regimes.
We derive the equations of motion of relativistic, non-resistive, second-order dissipative magnetohydrodynamics from the Boltzmann equation using the method of moments. We assume the fluid to be composed of a single type of point-like particles with vanishing dipole moment or spin, so that the fluid has vanishing magnetization and polarization. In a first approximation, we assume the fluid to be non-resistive, which allows to express the electric field in terms of the magnetic field. We derive equations of motion for the irreducible moments of the deviation of the single-particle distribution function from local thermodynamical equilibrium. We analyze the Navier-Stokes limit of these equations, reproducing previous results for the structure of the first-order transport coefficients. Finally, we truncate the system of equations for the irreducible moments using the 14-moment approximation, deriving the equations of motion of relativistic, non-resistive, second-order dissipative magnetohydrodynamics. We also give expressions for the new transport coefficients appearing due to the coupling of the magnetic field to the dissipative quantities.