Do you want to publish a course? Click here

From kinetic theory to dissipative fluid dynamics

129   0   0.0 ( 0 )
 Added by Dirk H. Rischke
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We present the results of deriving the Israel-Stewart equations of relativistic dissipative fluid dynamics from kinetic theory via Grads 14-moment expansion. Working consistently to second order in the Knudsen number, these equations contain several new terms which are absent in previous treatments.



rate research

Read More

228 - B. Betz , G. S. Denicol , T. Koide 2010
We derive the equations of second order dissipative fluid dynamics from the relativistic Boltzmann equation following the method of W. Israel and J. M. Stewart. We present a frame independent calculation of all first- and second-order terms and their coefficients using a linearised collision integral. Therefore, we restore all terms that were previously neglected in the original papers of W. Israel and J. M. Stewart.
130 - G.S. Denicol , T. Koide , 2010
We re-derive the equations of motion of dissipative relativistic fluid dynamics from kinetic theory. In contrast to the derivation of Israel and Stewart, which considered the second moment of the Boltzmann equation to obtain equations of motion for the dissipative currents, we directly use the latters definition. Although the equations of motion obtained via the two approaches are formally identical, the coefficients are different. We show that, for the one-dimensional scaling expansion, our method is in better agreement with the solution obtained from the Boltzmann equation.
Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, called anisotropic dissipative fluid dynamics, in terms of an expansion around a single-particle distribution function, $hat{f}_{0bf k}$, which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. We construct such an expansion in terms of polynomials in energy and momentum in the direction of the anisotropy and of irreducible tensors in the two-dimensional momentum subspace orthogonal to both the fluid velocity and the direction of the anisotropy. From the Boltzmann equation we then derive the set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from $hat{f}_{0bf k}$. Truncating this set via the 14-moment approximation, we obtain the equations of motion of anisotropic dissipative fluid dynamics.
[Background] Experimental data from heavy-ion experiments at RHIC-BNL and LHC-CERN are quantitatively described using relativistic fluid dynamics. Even p+A and p+p collisions show signs of collective behavior describable in the same manner. Nevertheless, small system sizes and large gradients strain the limits of applicability of fluid-dynamical methods. [Purpose] The range of applicability of fluid dynamics for the description of the collective behavior, and in particular of the elliptic flow, of small systems needs to be explored. [Method] Results of relativistic fluid-dynamical simulations are compared with solutions of the Boltzmann equation in a longitudinally boost-invariant picture. As initial condition, several different transverse energy-density profiles for equilibrated matter are investigated. [Results] While there is overall a fair agreement of energy- and particle-density profiles, components of the shear-stress tensor are more sensitive to details of the implementation. The highest sensitivity is exhibited by quantities influenced by properties of the medium at freeze-out. [Conclusions] For some quantities, like the shear-stress tensor, agreement between fluid dynamics and transport theory extends into regions of Knudsen numbers and inverse Reynolds numbers where relativistic fluid dynamics is believed to fail.
The microscopic formulae of the bulk viscosity $zeta $ and the corresponding relaxation time $tau_{Pi}$ in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulae to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition and $tau_{Pi}$ and $zeta $ are related as $tau_{Pi}=zeta /[beta {(1/3-c_{s}^{2})(epsilon +P)-2(epsilon -3P)/9}]$, where $epsilon $, $P$ and $c_{s}$ are the energy density, pressure and velocity of sound, respectively. The predicted $zeta $ and $% tau_{Pi}$ should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all the three approaches are consistent with the causality condition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا