Do you want to publish a course? Click here

Dissipative relativistic fluid dynamics: a new way to derive the equations of motion from kinetic theory

118   0   0.0 ( 0 )
 Added by Gabriel Denicol
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We re-derive the equations of motion of dissipative relativistic fluid dynamics from kinetic theory. In contrast to the derivation of Israel and Stewart, which considered the second moment of the Boltzmann equation to obtain equations of motion for the dissipative currents, we directly use the latters definition. Although the equations of motion obtained via the two approaches are formally identical, the coefficients are different. We show that, for the one-dimensional scaling expansion, our method is in better agreement with the solution obtained from the Boltzmann equation.



rate research

Read More

111 - B. Betz , D. Henkel , D.H. Rischke 2008
We present the results of deriving the Israel-Stewart equations of relativistic dissipative fluid dynamics from kinetic theory via Grads 14-moment expansion. Working consistently to second order in the Knudsen number, these equations contain several new terms which are absent in previous treatments.
The microscopic formulae of the bulk viscosity $zeta $ and the corresponding relaxation time $tau_{Pi}$ in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulae to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition and $tau_{Pi}$ and $zeta $ are related as $tau_{Pi}=zeta /[beta {(1/3-c_{s}^{2})(epsilon +P)-2(epsilon -3P)/9}]$, where $epsilon $, $P$ and $c_{s}$ are the energy density, pressure and velocity of sound, respectively. The predicted $zeta $ and $% tau_{Pi}$ should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all the three approaches are consistent with the causality condition.
211 - B. Betz , G. S. Denicol , T. Koide 2010
We derive the equations of second order dissipative fluid dynamics from the relativistic Boltzmann equation following the method of W. Israel and J. M. Stewart. We present a frame independent calculation of all first- and second-order terms and their coefficients using a linearised collision integral. Therefore, we restore all terms that were previously neglected in the original papers of W. Israel and J. M. Stewart.
The transport coefficients of causal relativistic dissipative fluid dynamics are calculated both in a field-theoretical and a kinetic approach. We find that the results from the traditional kinetic calculation by Israel and Stewart are modified. The new expressions for the viscous transport coefficients agree with the results obtained in the field-theoretical approach when the contributions from pair creation and annihilation are neglected.
The microscopic formulas for the shear viscosity $eta$, the bulk viscosity $zeta$, and the corresponding relaxation times $tau_pi$ and $tau_Pi$ of causal dissipative relativistic fluid-dynamics are obtained at finite temperature and chemical potential by using the projection operator method. The non-triviality of the finite chemical potential calculation is attributed to the arbitrariness of the operator definition for the bulk viscous pressure.We show that, when the operator definition for the bulk viscous pressure $Pi$ is appropriately chosen, the leading-order result of the ratio, $zeta$ over $tau_Pi$, coincides with the same ratio obtained at vanishing chemical potential. We further discuss the physical meaning of the time-convolutionless (TCL) approximation to the memory function, which is adopted to derive the main formulas. We show that the TCL approximation violates the time reversal symmetry appropriately and leads results consistent with the quantum master equation obtained by van Hove. Furthermore, this approximation can reproduce an exact relation for transport coefficients obtained by using the f-sum rule derived by Kadanoff and Martin. Our approach can reproduce also the result in Baier et al.(2008) Ref. cite{con} by taking into account the next-order correction to the TCL approximation, although this correction causes several problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا