Do you want to publish a course? Click here

Faint NUV/FUV Standards from Swift/UVOT, GALEX and SDSS Photometry

160   0   0.0 ( 0 )
 Added by Michael H. Siegel
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

At present, the precision of deep ultraviolet photometry is somewhat limited by the dearth of faint ultraviolet standard stars. In an effort to improve this situation, we present a uniform catalog of eleven new faint (u sim17) ultraviolet standard stars. High-precision photometry of these stars has been taken from the Sloan Digital Sky Survey and Galaxy Evolution Explorer and combined with new data from the Swift Ultraviolet Optical Telescope to provide precise photometric measures extending from the Near Infrared to the Far Ultraviolet. These stars were chosen because they are known to be hot (20,000 < T_eff < 50,000 K) DA white dwarfs with published Sloan spectra that should be photometrically stable. This careful selection allows us to compare the combined photometry and Sloan spectroscopy to models of pure hydrogen atmospheres to both constrain the underlying properties of the white dwarfs and test the ability of white dwarf models to predict the photometric measures. We find that the photometry provides good constraint on white dwarf temperatures, which demonstrates the ability of Swift/UVOT to investigate the properties of hot luminous stars. We further find that the models reproduce the photometric measures in all eleven passbands to within their systematic uncertainties. Within the limits of our photometry, we find the standard stars to be photometrically stable. This success indicates that the models can be used to calibrate additional filters to our standard system, permitting easier comparison of photometry from heterogeneous sources. The largest source of uncertainty in the model fitting is the uncertainty in the foreground reddening curve, a problem that is especially acute in the UV.

rate research

Read More

We have established a network of 19 faint (16.5 mag $< V < $19 mag) northern and equatorial DA white dwarfs as spectrophotometric standards for present and future wide-field observatories. Our analysis infers SED models for the stars that are tied to the three CALSPEC primary standards. Our SED models are consistent with panchromatic Hubble Space Telescope ($HST$) photometry to better than 1%. The excellent agreement between observations and models validates the use of non-local-thermodynamic-equilibrium (NLTE) DA white dwarf atmospheres extinguished by interstellar dust as accurate spectrophotometric references. Our standards are accessible from both hemispheres and suitable for ground and space-based observatories covering the ultraviolet to the near infrared. The high-precision of these faint sources make our network of standards ideally suited for any experiment that has very stringent requirements on flux calibration, such as studies of dark energy using the Large Synoptic Survey Telescope (LSST) and the Wide-Field Infrared Survey Telescope ($WFIRST$).
We present Galaxy Evolution Explorer (GALEX) far-UV and near-UV mosaic observations covering the entirety of M31 and M33. For both targets, we measure the decline of surface brightness (in FUV and NUV) and changes in FUV--NUV color as a function of galactocentric radius. These UV radial profiles are compared to the distribution of ionized gas traced by H-alpha emission. We find that the extent of the UV emission, in both targets, is greater than the extent of the observed HII regions and diffuse ionized gas. We determine the ultraviolet diffuse fraction in M33 using our FUV observations and compare it to the H-alpha diffuse fraction obtained from wide-field narrow-band imaging. The FUV diffuse fraction appears to be remarkably constant near 0.65 over a large range in galactocentric radius, with departures to higher values in circumnuclear regions and, most notably, at the limit of the H-alpha disk. We suggest that the increase in FUV diffuse fraction at large galactocentric radii could indicate that a substantial portion of the diffuse emission beyond this point is not generated in situ but rather scattered from dust, after originating in the vicinity of the disks outermost HII regions. Radial variation of the H-alpha diffuse fraction was also measured. We found the H-alpha diffuse fraction generally near 0.4 but rising toward the galaxy center, up to 0.6. We made no attempt to correct our diffuse fraction measurements for position-dependent extinction, so the quoted values are best interpreted as upper limits given the plausibly higher extinction for stellar clusters relative to their surroundings.
In order to generate credible 0.1-2 {mu}m SEDs, the GAMA project requires many Gigabytes of imaging data from a number of instruments to be re-processed into a standard format. In this paper we discuss the software infrastructure we use, and create self-consistent ugrizYJHK photometry for all sources within the GAMA sample. Using UKIDSS and SDSS archive data, we outline the pre-processing necessary to standardise all images to a common zeropoint, the steps taken to correct for seeing bias across the dataset, and the creation of Gigapixel-scale mosaics of the three 4x12 deg GAMA regions in each filter. From these mosaics, we extract source catalogues for the GAMA regions using elliptical Kron and Petrosian matched apertures. We also calculate Sersic magnitudes for all galaxies within the GAMA sample using SIGMA, a galaxy component modelling wrapper for GALFIT 3. We compare the resultant photometry directly, and also calculate the r band galaxy LF for all photometric datasets to highlight the uncertainty introduced by the photometric method. We find that (1) Changing the object detection threshold has a minor effect on the best-fitting Schechter parameters of the overall population (M* +/- 0.055mag, {alpha} +/- 0.014, {Phi}* +/- 0.0005 h^3 Mpc^{-3}). (2) An offset between datasets that use Kron or Petrosian photometry regardless of the filter. (3) The decision to use circular or elliptical apertures causes an offset in M* of 0.20mag. (4) The best-fitting Schechter parameters from total-magnitude photometric systems (such as SDSS modelmag or Sersic magnitudes) have a steeper faint-end slope than photometry dependent on Kron or Petrosian magnitudes. (5) Our Universes total luminosity density, when calculated using Kron or Petrosian r-band photometry, is underestimated by at least 15%.
The currently defined UKIRT Faint Standards have JHK magnitudes between 10 and 15, with K_median=11.2. These stars will be too bright for the next generation of large telescopes. We have used multi-epoch observations taken as part of the UKIRT Infrared Deep Sky Survey (UKIDSS) and the Visible and Infrared Survey Telescope for Astronomy (VISTA) surveys to identify non-variable stars with JHK magnitudes in the range 16-19. The stars were selected from the UKIDSS Deep Extragalactic Survey (DXS) and Ultra Deep Survey (UDS), the WFCAM calibration data (WFCAMCAL08B), the VISTA Deep Extragalactic Observations (VIDEO) and UltraVISTA. Sources selected from the near-infrared databases were paired with the Pan-STARRS Data Release 2 of optical to near-infrared photometry and the Gaia astrometric Data Release 2. Colour indices and other measurements were used to exclude sources that did not appear to be simple single stars. From an initial selection of 169 sources, we present a final sample of 81 standard stars with ZYJHK magnitudes, or a subset, each with 20 to 600 observations in each filter. The new standards have Ks_median=17.5. The relative photometric uncertainty for the sample is <0.006 mag and the absolute uncertainty is estimated to be <~0.02 mag. The sources are distributed equatorially and are accessible from both hemispheres.
80 - S. J. Curran 2020
Machine learning techniques, specifically the k-nearest neighbour algorithm applied to optical band colours, have had some success in predicting photometric redshifts of quasi-stellar objects (QSOs): Although the mean of differences between the spectroscopic and photometric redshifts is close to zero, the distribution of these differences remains wide and distinctly non-Gaussian. As per our previous empirical estimate of photometric redshifts, we find that the predictions can be significantly improved by adding colours from other wavebands, namely the near-infrared and ultraviolet. Self-testing this, by using half of the 33 643 strong QSO sample to train the algorithm, results in a significantly narrower spread for the remaining half of the sample. Using the whole QSO sample to train the algorithm, the same set of magnitudes return a similar spread for a sample of radio sources (quasars). Although the matching coincidence is relatively low (739 of the 3663 sources having photometry in the relevant bands), this is still significantly larger than from the empirical method (2%) and thus may provide a method with which to obtain redshifts for the vast number of continuum radio sources expected to be detected with the next generation of large radio telescopes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا