Do you want to publish a course? Click here

Sub-percent Photometry: Faint DA White Dwarf Spectophotometric Standards for Astrophysical Observatories

174   0   0.0 ( 0 )
 Added by Gautham Narayan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have established a network of 19 faint (16.5 mag $< V < $19 mag) northern and equatorial DA white dwarfs as spectrophotometric standards for present and future wide-field observatories. Our analysis infers SED models for the stars that are tied to the three CALSPEC primary standards. Our SED models are consistent with panchromatic Hubble Space Telescope ($HST$) photometry to better than 1%. The excellent agreement between observations and models validates the use of non-local-thermodynamic-equilibrium (NLTE) DA white dwarf atmospheres extinguished by interstellar dust as accurate spectrophotometric references. Our standards are accessible from both hemispheres and suitable for ground and space-based observatories covering the ultraviolet to the near infrared. The high-precision of these faint sources make our network of standards ideally suited for any experiment that has very stringent requirements on flux calibration, such as studies of dark energy using the Large Synoptic Survey Telescope (LSST) and the Wide-Field Infrared Survey Telescope ($WFIRST$).



rate research

Read More

At present, the precision of deep ultraviolet photometry is somewhat limited by the dearth of faint ultraviolet standard stars. In an effort to improve this situation, we present a uniform catalog of eleven new faint (u sim17) ultraviolet standard stars. High-precision photometry of these stars has been taken from the Sloan Digital Sky Survey and Galaxy Evolution Explorer and combined with new data from the Swift Ultraviolet Optical Telescope to provide precise photometric measures extending from the Near Infrared to the Far Ultraviolet. These stars were chosen because they are known to be hot (20,000 < T_eff < 50,000 K) DA white dwarfs with published Sloan spectra that should be photometrically stable. This careful selection allows us to compare the combined photometry and Sloan spectroscopy to models of pure hydrogen atmospheres to both constrain the underlying properties of the white dwarfs and test the ability of white dwarf models to predict the photometric measures. We find that the photometry provides good constraint on white dwarf temperatures, which demonstrates the ability of Swift/UVOT to investigate the properties of hot luminous stars. We further find that the models reproduce the photometric measures in all eleven passbands to within their systematic uncertainties. Within the limits of our photometry, we find the standard stars to be photometrically stable. This success indicates that the models can be used to calibrate additional filters to our standard system, permitting easier comparison of photometry from heterogeneous sources. The largest source of uncertainty in the model fitting is the uncertainty in the foreground reddening curve, a problem that is especially acute in the UV.
66 - A. Calamida 2018
We present precise photometry and spectroscopy for 23 candidate spectrophotometric standard white dwarfs. The selected stars are distributed in the Northern hemisphere and around the celestial equators and are all fainter than r ~ 16.5 mag. This network of stars, when established as standards, together with the three Hubble Space Telescope primary CALSPEC white dwarfs, will provide a set of spectrophotometric standards to directly calibrate data products to better than 1%. These new faint standard white dwarfs will have enough signal-to-noise ratio in future deep photometric surveys and facilities to be measured accurately while still avoiding saturation in such surveys. They will also fall within the dynamic range of large telescopes and their instruments for the foreseeable future. This paper discusses the provenance of the observational data for our candidate standard stars. The comparison with models, reconciliation with reddening, and the consequent derivation of the full spectral energy density distributions for each of them is reserved for a subsequent paper.
We present initial results from a program aimed at establishing a network of hot DA white dwarfs to serve as spectrophotometric standards for present and future wide-field surveys. These stars span the equatorial zone and are faint enough to be conveniently observed throughout the year with large-aperture telescopes. Spectra of these white dwarfs are analyzed to generate a non-local-thermodynamic-equilibrium (NLTE) model atmosphere normalized to HST colors, including adjustments for wavelength-dependent interstellar extinction. Once established, this standard star network will serve ground-based observatories in both hemispheres as well as space-based instrumentation from the UV to the near IR. We demonstrate the effectiveness of this concept and show how two different approaches to the problem using somewhat different assumptions produce equivalent results. We discuss lessons learned and the resulting corrective actions applied to our program.
The currently defined UKIRT Faint Standards have JHK magnitudes between 10 and 15, with K_median=11.2. These stars will be too bright for the next generation of large telescopes. We have used multi-epoch observations taken as part of the UKIRT Infrared Deep Sky Survey (UKIDSS) and the Visible and Infrared Survey Telescope for Astronomy (VISTA) surveys to identify non-variable stars with JHK magnitudes in the range 16-19. The stars were selected from the UKIDSS Deep Extragalactic Survey (DXS) and Ultra Deep Survey (UDS), the WFCAM calibration data (WFCAMCAL08B), the VISTA Deep Extragalactic Observations (VIDEO) and UltraVISTA. Sources selected from the near-infrared databases were paired with the Pan-STARRS Data Release 2 of optical to near-infrared photometry and the Gaia astrometric Data Release 2. Colour indices and other measurements were used to exclude sources that did not appear to be simple single stars. From an initial selection of 169 sources, we present a final sample of 81 standard stars with ZYJHK magnitudes, or a subset, each with 20 to 600 observations in each filter. The new standards have Ks_median=17.5. The relative photometric uncertainty for the sample is <0.006 mag and the absolute uncertainty is estimated to be <~0.02 mag. The sources are distributed equatorially and are accessible from both hemispheres.
The determination of atmospheric parameters of white dwarf stars (WDs) is crucial for researches on them. Traditional methodology is to fit the model spectra to observed absorption lines and report the parameters with the lowest $chi ^2$ error, which strongly relies on theoretical models that are not always publicly accessible. In this work, we construct a deep learning network to model-independently estimate Teff and log g of DA stars (DAs), corresponding to WDs with hydrogen dominated atmospheres. The network is directly trained and tested on the normalized flux pixels of full optical wavelength range of DAs spectroscopically confirmed in the Sloan Digital Sky Survey (SDSS). Experiments in test part yield that the root mean square error (RMSE) for Teff and log g approaches to 900 K and 0.1 dex, respectively. This technique is applicable for those DAs with Teff from 5000 K to 40000 K and log g from 7.0 dex to 9.0 dex. Furthermore, the applicability of this method is verified for the spectra with degraded resolution $sim 200$. So it is also practical for the analysis of DAs that will be detected by the Chinese Space Station Telescope (CSST).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا