Do you want to publish a course? Click here

Time-resolved detection of spin-transfer-driven ferromagnetic resonance and spin torque measurement in magnetic tunnel junctions

169   0   0.0 ( 0 )
 Added by Chen Wang
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Several experimental techniques have been introduced in recent years in attempts to measure spin transfer torque in magnetic tunnel junctions (MTJs). The dependence of spin torque on bias is important for understanding fundamental spin physics in magnetic devices and for applications. However, previous techniques have provided only indirect measures of the torque and their results to date for the bias dependence are qualitatively and quantitatively inconsistent. Here we demonstrate that spin torque in MTJs can be measured directly by using time-domain techniques to detect resonant magnetic precession in response to an oscillating spin torque. The technique is accurate in the high-bias regime relevant for applications, and because it detects directly small-angle linear-response magnetic dynamics caused by spin torque it is relatively immune to artifacts affecting competing techniques. At high bias we find that the spin torque vector differs markedly from the simple lowest-order Taylor series approximations commonly assumed.



rate research

Read More

The concept of perpendicular shape anisotropy spin-transfer torque magnetic random-access memory (PSA-STT-MRAM) consists in increasing the storage layer thickness to values comparable to the cell diameter, to induce a perpendicular shape anisotropy in the magnetic storage layer. Making use of that contribution, the downsize scalability of the STT-MRAM may be extended towards sub-20 nm technological nodes, thanks to a reinforcement of the thermal stability factor $Delta$. Although the larger storage layer thickness improves $Delta$, it is expected to negatively impact the writing current and switching time. Hence, optimization of the cell dimensions (diameter, thickness) is of utmost importance for attaining a sufficiently high $Delta$ while keeping a moderate writing current. Micromagnetic simulations were carried out for different pillar thicknesses of fixed lateral size 20 nm. The switching time and the reversal mechanism were analysed as a function of the applied voltage and aspect-ratio (AR) of the storage layer. For AR $<$ 1, the magnetization reversal resembles a macrospin-like mechanism, while for AR $>$ 1 a non-coherent reversal is observed, characterized by the nucleation of a transverse domain wall at the ferromagnet/insulator interface which then propagates along the vertical axis of the pillar. It was further observed that the inverse of the switching time is linearly dependent on the applied voltage. This study was extended to sub-20 nm width with a value of $Delta$ around 80. It was observed that the voltage necessary to reverse the magnetic layer increases as the lateral size is reduced, accompanied with a transition from macrospin-reversal to a buckling-like reversal at high aspect-ratios.
The thermal spin-transfer torque (TSTT) is an effect to switch the magnetic free layer in a magnetic tunnel junction by a temperature gradient only. We present ab initio calculations of the TSTT. In particular, we discuss the influence of magnetic layer composition by considering $text{Fe}_text{x}text{Co}_{text{1-x}}$ alloys. Further, we compare the TSTT to the bias voltage driven STT and discuss the requirements for a possible thermal switching. For example, only for very thin barriers of 3 monolayers MgO a thermal switching is imaginable. However, even for such a thin barrier the TSTT is still too small for switching at the moment and further optimization is needed. In particular, the TSTT strongly depends on the composition of the ferromagentic layer. In our current study it turns out that at the chosen thickness of the ferromagnetic layer pure Fe gives the highest thermal spin-transfer torque.
We calculate the spin-transfer torque in Fe/MgO/Fe tunnel junctions and compare the results to those for all-metallic junctions. We show that the spin-transfer torque is interfacial in the ferromagnetic layer to a greater degree than in all-metallic junctions. This result originates in the half metallic behavior of Fe for the $Delta_1$ states at the Brillouin zone center; in contrast to all-metallic structures, dephasing does not play an important role. We further show that it is possible to get a component of the torque that is out of the plane of the magnetizations and that is linear in the bias. However, observation of such a torque requires highly ideal samples. In samples with typical interfacial roughness, the torque is similar to that in all-metallic multilayers, although for different reasons.
We use three-terminal magnetic tunnel junctions (MTJs) designed for field-free switching by spin-orbit torques (SOTs) to systematically study the impact of dual voltage pulses on the switching performances. We show that the concurrent action of an SOT pulse and an MTJ bias pulse allows for reducing the critical switching energy below the level typical of spin transfer torque while preserving the ability to switch the MTJ on the sub-ns time scale. By performing dc and real-time electrical measurements, we discriminate and quantify three effects arising from the MTJ bias: the voltage-controlled change of the perpendicular magnetic anisotropy, current-induced heating, and the spin transfer torque. The experimental results are supported by micromagnetic modeling. We observe that, depending on the pulse duration and the MTJ diameter, different effects take a lead in assisting the SOTs in the magnetization reversal process. Finally, we present a compact model that allows for evaluating the impact of each effect due to the MTJ bias on the critical switching parameters. Our results provide input to optimize the switching of three-terminal devices as a function of time, size, and material parameters.
We demonstrate a technique of broadband spin torque ferromagnetic resonance (ST-FMR) with magnetic field modulation for measurements of spin wave properties in magnetic nanostructures. This technique gives great improvement in sensitivity over the conventional ST-FMR measurements, and application of this technique to nanoscale magnetic tunnel junctions (MTJs) reveals a rich spectrum of standing spin wave eigenmodes. Comparison of the ST-FMR measurements with micromagnetic simulations of the spin wave spectrum allows us to explain the character of low-frequency magnetic excitations in nanoscale MTJs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا