Do you want to publish a course? Click here

Interplay of voltage control of magnetic anisotropy, spin transfer torque, and heat in the spin-orbit torque switching in three-terminal magnetic tunnel junctions

131   0   0.0 ( 0 )
 Added by Viola Krizakova
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use three-terminal magnetic tunnel junctions (MTJs) designed for field-free switching by spin-orbit torques (SOTs) to systematically study the impact of dual voltage pulses on the switching performances. We show that the concurrent action of an SOT pulse and an MTJ bias pulse allows for reducing the critical switching energy below the level typical of spin transfer torque while preserving the ability to switch the MTJ on the sub-ns time scale. By performing dc and real-time electrical measurements, we discriminate and quantify three effects arising from the MTJ bias: the voltage-controlled change of the perpendicular magnetic anisotropy, current-induced heating, and the spin transfer torque. The experimental results are supported by micromagnetic modeling. We observe that, depending on the pulse duration and the MTJ diameter, different effects take a lead in assisting the SOTs in the magnetization reversal process. Finally, we present a compact model that allows for evaluating the impact of each effect due to the MTJ bias on the critical switching parameters. Our results provide input to optimize the switching of three-terminal devices as a function of time, size, and material parameters.



rate research

Read More

Current-induced spin-transfer torques (STT) and spin-orbit torques (SOT) enable the electrical switching of magnetic tunnel junctions (MTJs) in nonvolatile magnetic random access memories. In order to develop faster memory devices, an improvement of the timescales underlying the current driven magnetization dynamics is required. Here we report all-electrical time-resolved measurements of magnetization reversal driven by SOT in a three-terminal MTJ device. Single-shot measurements of the MTJ resistance during current injection reveal that SOT switching involves a stochastic two-step process consisting of a domain nucleation time and propagation time, which have different genesis, timescales, and statistical distributions compared to STT switching. We further show that the combination of SOT, STT, and voltage control of magnetic anisotropy (VCMA) leads to reproducible sub-ns switching with a spread of the cumulative switching time smaller than 0.2 ns. Our measurements unravel the combined impact of SOT, STT, and VCMA in determining the switching speed and efficiency of MTJ devices.
The concept of perpendicular shape anisotropy spin-transfer torque magnetic random-access memory (PSA-STT-MRAM) consists in increasing the storage layer thickness to values comparable to the cell diameter, to induce a perpendicular shape anisotropy in the magnetic storage layer. Making use of that contribution, the downsize scalability of the STT-MRAM may be extended towards sub-20 nm technological nodes, thanks to a reinforcement of the thermal stability factor $Delta$. Although the larger storage layer thickness improves $Delta$, it is expected to negatively impact the writing current and switching time. Hence, optimization of the cell dimensions (diameter, thickness) is of utmost importance for attaining a sufficiently high $Delta$ while keeping a moderate writing current. Micromagnetic simulations were carried out for different pillar thicknesses of fixed lateral size 20 nm. The switching time and the reversal mechanism were analysed as a function of the applied voltage and aspect-ratio (AR) of the storage layer. For AR $<$ 1, the magnetization reversal resembles a macrospin-like mechanism, while for AR $>$ 1 a non-coherent reversal is observed, characterized by the nucleation of a transverse domain wall at the ferromagnet/insulator interface which then propagates along the vertical axis of the pillar. It was further observed that the inverse of the switching time is linearly dependent on the applied voltage. This study was extended to sub-20 nm width with a value of $Delta$ around 80. It was observed that the voltage necessary to reverse the magnetic layer increases as the lateral size is reduced, accompanied with a transition from macrospin-reversal to a buckling-like reversal at high aspect-ratios.
The thermal spin-transfer torque (TSTT) is an effect to switch the magnetic free layer in a magnetic tunnel junction by a temperature gradient only. We present ab initio calculations of the TSTT. In particular, we discuss the influence of magnetic layer composition by considering $text{Fe}_text{x}text{Co}_{text{1-x}}$ alloys. Further, we compare the TSTT to the bias voltage driven STT and discuss the requirements for a possible thermal switching. For example, only for very thin barriers of 3 monolayers MgO a thermal switching is imaginable. However, even for such a thin barrier the TSTT is still too small for switching at the moment and further optimization is needed. In particular, the TSTT strongly depends on the composition of the ferromagentic layer. In our current study it turns out that at the chosen thickness of the ferromagnetic layer pure Fe gives the highest thermal spin-transfer torque.
A practical problem for memory applications involving perpendicularly magnetized magnetic tunnel junctions is the reliability of switching characteristics at high-bias voltage. Often it has been observed that at high-bias, additional error processes are present that cause a decrease in switching probability upon further increase of bias voltage. We identify the main cause of such error-rise process through examination of switching statistics as a function of bias voltage and applied field, and the junction switching dynamics in real time. These experiments show a coincidental onset of error-rise and the presence of a new low-frequency microwave emission well below that dictated by the anisotropy field. We show that in a few-macrospin coupled numerical model, this is consistent with an interface region with concentrated perpendicular anisotropy, and where the magnetic moment has limited exchange coupling to the rest of the layers. These results point to the important role high-frequency interface magnetic moment dynamics play in determining the switching characteristics of these tunnel junction devices.
We simulate the spin torque-induced reversal of the magnetization in thin disks with perpendicular anisotropy at zero temperature. Disks typically smaller than 20 nm in diameter exhibit coherent reversal. A domain wall is involved in larger disks. We derive the critical diameter of this transition. Using a proper definition of the critical voltage, a macrospin model can account perfectly for the reversal dynamics when the reversal is coherent. The same critical voltage appears to match with the micromagnetics switching voltage regardless of the switching path.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا