Do you want to publish a course? Click here

Directional Roll-up of Nanomembranes Mediated by Wrinkling

122   0   0.0 ( 0 )
 Added by Peter Cendula
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the relaxation of rectangular wrinkled thin films intrinsically containing an initial strain gradient. A preferential rolling direction, depending on wrinkle geometry and strain gradient, is theoretically predicted and experimentally verified. In contrast to typical rolled-up nanomembranes, which bend perpendicular to the longer edge of rectangular patterns, we find a regime where rolling parallel to the long edge of the wrinkled film is favorable. A non-uniform radius of the rolled-up film is well reproduced by elasticity theory and simulations of the film relaxation using a finite element method.



rate research

Read More

We investigate generation of exchange magnons by ultrashort, picosecond acoustic pulses propagating through ferromagnetic thin films. Using the Landau-Lifshitz-Gilbert equations we derive the dispersion relation for exchange magnons for an external magnetic field tilted with respect to the film normal. Decomposing the solution in a series of standing spin wave modes, we derive a system of ordinary differential equations and driven harmonic oscillator equations describing the dynamics of individual magnon mode. The external magnetoelastic driving force is given by the time-dependent spatial Fourier components of acoustic strain pulses inside the layer. Dependencies of the magnon excitation efficiencies on the duration of the acoustic pulses and the external magnetic field highlight the role of acoustic bandwidth and phonon-magnon phase matching. Our simulations for ferromagnetic nickel evidence the possibility of ultrafast magneto-acoustic excitation of exchange magnons within the bandwidth of acoustic pulses in thin samples under conditions readily obtained in femtosecond pump-probe experiments.
The interface between a solid and vacuum can become electronically distinct from the bulk. This feature, encountered in the case of quantum Hall effect, has a manifestation in insulators with topologically protected metallic surface states. Non-trivial Berry curvature of the Bloch waves or periodically driven perturbation are known to generate it. Here, by studying the angle-dependent magnetoresistance in prismatic bismuth crystals of different shapes, we detect a robust surface contribution to electric conductivity when the magnetic field is aligned parallel to a two-dimensional boundary between the three-dimensional crystal and vacuum. The effect is absent in antimony, which has an identical crystal symmetry, a similar Fermi surface structure and equally ballistic carriers, but an inverted band symmetry and a topological invariant of opposite sign. Our observation points to the relevance of band symmetries to survival of metallicity at the boundary interrupting the cyclotron orbits.
Nanoscale semiconductor materials have been extensively investigated as the channel materials of transistors for energy-efficient low-power logic switches to enable scaling to smaller dimensions. On the opposite end of transistor applications is power electronics for which transistors capable of switching very high voltages are necessary. Miniaturization of energy-efficient power switches can enable the integration with various electronic systems and lead to substantial boosts in energy efficiency. Nanotechnology is yet to have an impact in this arena. In this work, it is demonstrated that nanomembranes of the wide-bandgap semiconductor gallium oxide can be used as channels of transistors capable of switching high voltages, and at the same time can be integrated on any platform. The findings mark a step towards using lessons learnt in nanomaterials and nanotechnology to address a challenge that yet remains untouched by the field.
The conductance of a molecular junction is commonly determined by either charge-transfer-doping, where alignment of the Fermi energy to the molecular levels is achieved, or tunnelling through the tails of molecular resonances within the highest-occupied and lowest-unoccupied molecular-orbital gap. Here, we present an alternative mechanism where electron transport is dominated by electrode surface states. They give rise to metallization of the molecular bridge and additional, pronounced conductance resonances allowing for substantial tailoring of its electronic properties via, e.g. a gate voltage. This is demonstrated in a field-effect geometry of a fullerene-bridge between two metallic carbon nanotubes.
An equilibrium phase diagram for the shape of compressively strained free-hanging films is developed by total strain energy minimization. For small strain gradients {Delta}{epsilon}, the film wrinkles, while for sufficiently large {Delta}{epsilon}, a phase transition from wrinkling to bending occurs. We consider competing relaxation mechanisms for free-hanging films, which have rolled up into tube structures, and we provide an upper limit for the maximum achievable number of tube rotations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا